Abstract
Abstract. Ongoing climate change is known to cause an increase in the frequency and amplitude of local temperature and precipitation extremes in many regions of the Earth. While gradual changes in the climatological conditions are known to strongly influence plant flowering dates, the question arises if and how extremes specifically impact the timing of this important phenological phase. In this study, we systematically quantify simultaneities between meteorological extremes and the timing of flowering of four shrub species across Germany by means of event coincidence analysis, a novel statistical tool that allows assessing whether or not two types of events exhibit similar sequences of occurrences. Our systematic investigation supports previous findings of experimental studies by highlighting the impact of early spring temperatures on the flowering of wildlife plants. In addition, we find statistically significant indications for some long-term relations reaching back to the previous year.
Reference69 articles.
1. Ahas, R., Jaagus, J., and Aasa, A.: The phenological calendar of Estonia and its correlation with mean air temperature, Int. J. Biometeorol., 44, 159–166, 2000.
2. Allen, C. and Breshears, D.: Drought-induced shift of a forest–woodland ecotone: rapid landscape response to climate variation, P. Natl. Acad. Sci. USA, 95, 14839–14842, 1998.
3. Arnold, C., Ghezzehei, T., and Berhe, A.: Early spring, severe frost events, and drought induce rapid carbon loss in high elevation meadows, PLOS ONE, 9, e106058, https://doi.org/ 10.1371/journal.pone.0106058, 2014.
4. Atkinson, M. and Atkinson, E.: Sambucus nigra L., J. Ecol., 90, 895–923, 2002.
5. Augspurger, C.: Spring 2007 warmth and frost: phenology, damage and refoliation in a temperate deciduous forest, Funct. Ecol., 23, 1031–1039, 2009.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献