Modeling directed weighted network based on event coincidence analysis and its application on spatial propagation characteristics

Author:

Wang L. N.12ORCID,Li M.1,Zang C. R.3

Affiliation:

1. College of Sciences, Inner Mongolia University of Technology 1 , Hohhot 010051, China

2. Inner Mongolia Key Laboratory of Statistical Analysis Theory for Life Data and Neural Network Modeling 2 , Hohhot 010051, China

3. Inner Mongolia Branch, China Unicom 3 , Hohhot 010050, China

Abstract

The problem of synchronicity quantification, based on event occurrence time, has become the research focus in different fields. Methods of synchrony measurement provide an effective way to explore spatial propagation characteristics of extreme events. Using the synchrony measurement method of event coincidence analysis, we construct a directed weighted network and innovatively explore the direction of correlations between event sequences. Based on trigger event coincidence, the synchrony of traffic extreme events of base stations is measured. Analyzing topology characteristics of the network, we study the spatial propagation characteristics of traffic extreme events in the communication system, including the propagation area, propagation influence, and spatial aggregation. This study provides a framework of network modeling to quantify the propagation characteristics of extreme events, which is helpful for further research on the prediction of extreme events. In particular, our framework is effective for events that occurred in time aggregation. In addition, from the perspective of a directed network, we analyze differences between the precursor event coincidence and the trigger event coincidence and the impact of event aggregation on the synchrony measurement methods. The precursor event coincidence and the trigger event coincidence are consistent when identifying event synchronization, while there are differences when measuring the event synchronization extent. Our study can provide a reference for the analysis of extreme climatic events such as rainstorms, droughts, and others in the climate field.

Funder

Natural Science Foundation of Inner Mongolia

Fundamental Research Funds for the Directly Affiliated Universities of Inner Mongolia

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3