Source identification of short-lived air pollutants in the Arctic using statistical analysis of measurement data and particle dispersion model output

Author:

Hirdman D.,Sodemann H.,Eckhardt S.,Burkhart J. F.,Jefferson A.,Mefford T.,Quinn P. K.,Sharma S.,Ström J.,Stohl A.

Abstract

Abstract. As a part of the IPY project POLARCAT (Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, of Climate Chemistry, Aerosols and Transport), this paper studies the sources of equivalent black carbon (EBC), sulphate, light-scattering aerosols and ozone measured at the Arctic stations Zeppelin, Alert, Barrow and Summit during the years 2000–2007. These species are important pollutants and climate forcing agents, and sulphate and EBC are main components of Arctic haze. To determine where these substances originate, the measurement data were combined with calculations using FLEXPART, a Lagrangian particle dispersion model. The climatology of atmospheric transport from surrounding regions on a twenty-day time scale modelled by FLEXPART shows that the stations Zeppelin, Alert and Barrow are highly sensitive to surface emissions in the Arctic and to emissions in high-latitude Eurasia in winter. Emission sensitivities over southern Asia and southern North America are small throughout the year. The high-altitude station Summit is an order of magnitude less sensitive to surface emissions in the Arctic whereas emissions in the southern parts of the Northern Hemisphere continents are more influential relative to the other stations. Our results show that for EBC and sulphate measured at Zeppelin, Alert and Barrow, northern Eurasia is the dominant source region. For sulphate, Eastern Europe and the metal smelting industry in Norilsk are particularly important. For EBC, boreal forest fires also contribute in summer. No evidence for any substantial contribution to EBC from sources in southern Asia is found. European air masses are associated with low ozone concentrations in winter due to titration by nitric oxides, but are associated with high ozone concentrations in summer due to photochemical ozone formation. There is also a strong influence of ozone depletion events in the Arctic boundary layer on measured ozone concentrations in spring and summer. These results will be useful for developing emission reduction strategies for the Arctic.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3