Composition and sources of carbonaceous aerosol in the European Arctic at Zeppelin Observatory, Svalbard (2017 to 2020)

Author:

Yttri Karl EspenORCID,Bäcklund Are,Conen FranzORCID,Eckhardt SabineORCID,Evangeliou NikolaosORCID,Fiebig MarkusORCID,Kasper-Giebl Anne,Gold Avram,Gundersen Hans,Myhre Cathrine LundORCID,Platt Stephen Matthew,Simpson DavidORCID,Surratt Jason D.ORCID,Szidat SönkeORCID,Rauber Martin,Tørseth Kjetil,Ytre-Eide Martin Album,Zhang Zhenfa,Aas WencheORCID

Abstract

Abstract. We analyzed long-term measurements of organic carbon, elemental carbon, and source-specific organic tracers from 2017 to 2020 to constrain carbonaceous aerosol sources in the rapidly changing Arctic. Additionally, we used absorption photometer (Aethalometer) measurements to constrain equivalent black carbon (eBC) from biomass burning and fossil fuel combustion, using positive matrix factorization (PMF). Our analysis shows that organic tracers are essential for understanding Arctic carbonaceous aerosol sources. Throughout 2017 to 2020, levoglucosan exhibited bimodal seasonality, reflecting emissions from residential wood combustion (RWC) in the heating season (November to May) and from wildfires (WFs) in the non-heating season (June to October), demonstrating a pronounced interannual variability in the influence of WF. Biogenic secondary organic aerosol (BSOA) species (2-methyltetrols) from isoprene oxidation was only present in the non-heating season, peaking in July to August. Warm air masses from Siberia led to a substantial increase in 2-methyltetrols in 2019 and 2020 compared to 2017 to 2018. This highlights the need to investigate the contribution of local sources vs. long-range atmospheric transport (LRT), considering the temperature sensitivity of biogenic volatile organic compound emissions from Arctic vegetation. Tracers of primary biological aerosol particles (PBAPs), including various sugars and sugar alcohols, showed elevated levels in the non-heating season, although with different seasonal trends, whereas cellulose had no apparent seasonality. Most PBAP tracers and 2-methyltetrols peaked during influence of WF emissions, highlighting the importance of measuring a range of source-specific tracers to understand sources and dynamics of carbonaceous aerosol. The seasonality of carbonaceous aerosol was strongly influenced by LRT episodes, as background levels are extremely low. In the non-heating season, the organic aerosol peak was as influenced by LRT, as was elemental carbon during the Arctic haze period. Source apportionment of carbonaceous aerosol by Latin hypercube sampling showed mixed contributions from RWC (46 %), fossil fuel (FF) sources (27 %), and BSOA (25 %) in the heating season. In contrast, the non-heating season was dominated by BSOA (56 %), with lower contributions from WF (26 %) and FF sources (15 %). Source apportionment of eBC by PMF showed that FF combustion dominated eBC (70±2.7 %), whereas RWC (22±2.7 %) was more abundant than WF (8.0±2.9 %). Modeled BC concentrations from FLEXPART (FLEXible PARTicle dispersion model) attributed an almost equal share to FF sources (51±3.1 %) and to biomass burning. Both FLEXPART and the PMF analysis concluded that RWC is a more important source of (e)BC than WF. However, with a modeled RWC contribution of 30±4.1 % and WF of 19±2.8 %, FLEXPART suggests relatively higher contributions to eBC from these sources. Notably, the BB fraction of EC was twice as high as that of eBC, reflecting methodological differences between source apportionment by LHS and PMF. However, important conclusions drawn are unaffected, as both methods indicate the presence of RWC- and WF-sourced BC at Zeppelin, with a higher relative BB contribution during the non-heating season. In summary, organic aerosol (281±106 ng m−3) constitutes a significant fraction of Arctic PM10, although surpassed by sea salt aerosol (682±46.9 ng m−3), mineral dust (613±368 ng m−3), and typically non-sea-salt sulfate SO42- (314±62.6 ng m−3), originating mainly from anthropogenic sources in winter and from natural sources in summer.

Publisher

Copernicus GmbH

Reference149 articles.

1. Aas, W., Eckhardt, S., Fiebig, M., Solberg, S., and Yttri, K. E.: Monitoring of long-range transported air pollutants in Norway, annual report 2019, Miljødirektoratet rapport, NILU, Kjeller, Norway, M-1710/2020 NILU OR 4/2020, https://hdl.handle.net/11250/2659956 (last access: 31 January 2024), 2020.

2. Agrios, K., Salazar, G., Zhang, Y. L., Uglietti, C., Battaglia, M., Luginbuhl, M., Ciobanu, V. G., Vonwiller, M., and Szidat, S.: Online coupling of pure O2 thermo-optical methods – 14C AMS for source apportionment of carbonaceous aerosols, Nucl. Instrum. Meth. B, 361, 288–293, https://doi.org/10.1016/j.nimb.2015.06.008, 2015.

3. Ahmed, A. A., Abd el-Razek, M. H., Abu Mostafa, E. A., Williams, H. J., Scott, A. I., Reibenspies, J. H., and Mabry, T. J.: A new derivative of glucose and 2-C-methyl-D-erythritol from Ferula sinaica, J. Nat. Prod., 59, 1171–1173, 1996.

4. Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 4039–4072, https://doi.org/10.5194/acp-11-4039-2011, 2011.

5. Alastuey, A., Querol, X., Aas, W., Lucarelli, F., Pérez, N., Moreno, T., Cavalli, F., Areskoug, H., Balan, V., Catrambone, M., Ceburnis, D., Cerro, J. C., Conil, S., Gevorgyan, L., Hueglin, C., Imre, K., Jaffrezo, J.-L., Leeson, S. R., Mihalopoulos, N., Mitosinkova, M., O'Dowd, C. D., Pey, J., Putaud, J.-P., Riffault, V., Ripoll, A., Sciare, J., Sellegri, K., Spindler, G., and Yttri, K. E.: Geochemistry of PM10 over Europe during the EMEP intensive measurement periods in summer 2012 and winter 2013, Atmos. Chem. Phys., 16, 6107–6129, https://doi.org/10.5194/acp-16-6107-2016, 2016.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3