Experimental study of the aerosol impact on fog microphysics

Author:

Mazoyer Marie,Burnet Frédéric,Denjean Cyrielle,Roberts Gregory C.,Haeffelin Martial,Dupont Jean-Charles,Elias Thierry

Abstract

Abstract. Comprehensive field campaigns dedicated to fog life cycle observation were conducted during the winters of 2010–2013 at the Instrumented Site for Atmospheric Remote Sensing Research (SIRTA) observatory in a suburb of Paris. In order to document their properties, in situ microphysical measurements collected during 23 fog events induced by both radiative cooling and stratus lowering are examined here. They reveal large variability in number, concentration and size of both aerosol background before the fog onset and fog droplets according to the different cases. The objective of this paper is to evaluate the impact of aerosol particles on the fog microphysics. To derive an accurate estimation of the actual activated fog droplet number concentration Nact, we determine the hygroscopicity parameter κ, the dry and the wet critical diameter and the critical supersaturation for each case by using an iterative procedure based on the κ-Köhler theory that combines cloud condensation nuclei (CCN), dry particle and droplet size distribution measurements. Our study reveals low values of the derived critical supersaturation occurring in fog with a median of 0.043 %. Consequently, the median dry and wet activation diameters are 0.39 and 3.79 µm, respectively, leading to a minor fraction of the aerosol population activated into droplets. The corresponding Nact values are low, with median concentrations of 53.5 and 111 cm−3 within the 75th percentile. The activated fraction of aerosols exhibits remarkably low correlation with κ values, which reflects the chemical composition of the aerosols. On the contrary, the activated fraction exhibits a strong correlation with the inferred critical diameter throughout the field campaigns. This suggests that the variability in the activated fraction is mostly driven by particle size, while variations in aerosol composition are of secondary importance. Moreover, our analysis suggests that the supersaturation reached in fog could be lowered by the aerosol number concentration, which could contribute to the sink term of water vapor during the radiative cooling. Although radiative fogs are usually associated with higher aerosol loading than stratus-lowering events, our analysis also reveals that the activated fraction at the beginning of the event is similar for both types of fog. However, the evolution of the droplet concentration during the fog life cycle shows significant differences between both types of fog. This work demonstrates that an accurate calculation of supersaturation is required to provide a realistic representation of fog microphysical properties in numerical models.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3