Event-driven deposition of snow on the Antarctic Plateau: analyzing field measurements with SNOWPACK
-
Published:2013-02-27
Issue:1
Volume:7
Page:333-347
-
ISSN:1994-0424
-
Container-title:The Cryosphere
-
language:en
-
Short-container-title:The Cryosphere
Author:
Groot Zwaaftink C. D.ORCID, Cagnati A., Crepaz A., Fierz C.ORCID, Macelloni G.ORCID, Valt M., Lehning M.ORCID
Abstract
Abstract. Antarctic surface snow has been studied by means of continuous measurements and observations over a period of 3 yr at Dome C. Snow observations include solid deposits in form of precipitation, diamond dust, or hoar, snow temperatures at several depths, records of deposition and erosion on the surface, and snow profiles. Together with meteorological data from automatic weather stations, this forms a unique dataset of snow conditions on the Antarctic Plateau. Large differences in snow amounts and density exist between solid deposits measured 1 m above the surface and deposition at the surface. We used the snow-cover model SNOWPACK to simulate the snow-cover evolution for different deposition parameterizations. The main adaptation of the model described here is a new event-driven deposition scheme. The scheme assumes that snow is added to the snow cover permanently only during periods of strong winds. This assumption followed from the comparison between observations of solid deposits and daily records of changes in snow height: solid deposits could be observed on tables 1 m above the surface on 94 out of 235 days (40%) while deposition at the surface occurred on 59 days (25%) during the same period, but both happened concurrently on 33 days (14%) only. This confirms that precipitation is not necessarily the driving force behind non-temporary snow height changes. A comparison of simulated snow height to stake farm measurements over 3 yr showed that we underestimate the total accumulation by at least 33%, when the total snow deposition is constrained by the measurements of solid deposits on tables 1 m above the surface. During shorter time periods, however, we may miss over 50% of the deposited mass. This suggests that the solid deposits measured above the surface and used to drive the model, even though comparable to ECMWF forecasts in its total magnitude, should be seen as a lower boundary. As a result of the new deposition mechanism, we found a good agreement between model results and measurements of snow temperatures and recorded snow profiles. In spite of the underestimated deposition, the results thus suggest that we can obtain quite realistic simulations of the Antarctic snow cover by the introduction of event-driven snow deposition.
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Water Science and Technology
Reference45 articles.
1. Alley, R. B.: Concerning the deposition and diagenesis of strata in polar firn, J. Glaciol., 34, 283–290, 1988. 2. Arthern, R. J., Vaughan, D. G., Rankin, A. M., Mulvaney, R., and Thomas, E. R.: In situ measurements of Antarctic snow compaction compared with predictions of models, J. Geophys. Res., 115, F03011, https://doi.org/10.1029/2009jf001306, 2010. 3. Birnbaum, G., Freitag, J., Brauner, R., Konig-Langlo, G., Schulz, E., Kipfstuhl, S., Oerter, H., Reijmer, C. H., Schlosser, E., Faria, S. H., Ries, H., Loose, B., Herber, A., Duda, M. G., Powers, J. G., Manning, K. W., and van den Broeke, M. R.: Strong-wind events and their influence on the formation of snow dunes: observations from Kohnen station, Dronning Maud Land, Antarctica, J. Glaciol., 56, 891–902, https://doi.org/10.3189/002214310794457272, 2010. 4. Bromwich, D. H.: Snowfall in High Southern Latitudes, Rev. Geophys., 26, 149–168, 1988. 5. Brun, E., Martin, E., and Spiridonov, V.: Coupling a multi-layered snow model with a GCM, Ann. Glaciol., 25, 66–72, 1997.
Cited by
68 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|