A simplified method for the detection of convection using high-resolution imagery from GOES-16

Author:

Lee YoonjinORCID,Kummerow Christian D.,Zupanski Milija

Abstract

Abstract. The ability to detect convective regions and to add latent heating to drive convection is one of the most important additions to short-term forecast models such as National Oceanic and Atmospheric Administration's (NOAA's) High-Resolution Rapid Refresh (HRRR) model. Since radars are most directly related to precipitation and are available in high temporal resolution, their data are often used for both detecting convection and estimating latent heating. However, radar data are limited to land areas, largely in developed nations, and early convection is not detectable from radars until drops become large enough to produce significant echoes. Visible and infrared sensors on a geostationary satellite can provide data that are more sensitive to small droplets, but they also have shortcomings: their information is almost exclusively from the cloud top. Relatively new geostationary satellites, Geostationary Operational Environmental Satellite-16 and Satellite-17 (GOES-16 and GOES-17), along with Himawari-8, can make up for this lack of vertical information through the use of very high spatial and temporal resolutions, allowing better observation of bubbling features on convective cloud tops. This study develops two algorithms to detect convection at vertically growing clouds and mature convective clouds using 1 min GOES-16 Advanced Baseline Imager (ABI) data. Two case studies are used to explain the two methods, followed by results applied to 1 month of data over the contiguous United States. Vertically growing clouds in early stages are detected using decreases in brightness temperatures over 10 min. For mature convective clouds which no longer show much of a decrease in brightness temperature, the lumpy texture from rapid development can be observed using 1 min high spatial resolution reflectance data. The detection skills of the two methods are validated against Multi-Radar/Multi-Sensor System (MRMS), a ground-based radar product. With the contingency table, results applying both methods to 1-month data show a relatively low false alarm rate of 14.4 % but missed 54.7 % of convective clouds detected by the radar product. These convective clouds were missed largely due to less lumpy texture, which is mostly caused by optically thick cloud shields above.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3