A Probabilistic Multispectral Pattern Recognition Method for Detection of Overshooting Cloud Tops Using Passive Satellite Imager Observations

Author:

Bedka Kristopher M.1,Khlopenkov Konstantin2

Affiliation:

1. NASA Langley Research Center, Hampton, Virginia

2. Science Systems and Applications, Inc., Hampton, Virginia

Abstract

AbstractDeep convective updrafts often penetrate through the surrounding cirrus anvil and into the lower stratosphere. Cross-tropopause transport of ice, water vapor, and chemicals occurs within these “overshooting tops” (OTs) along with a variety of hazardous weather conditions. OTs are readily apparent in satellite imagery, and, given the importance of OTs for weather and climate, a number of automated satellite-based detection methods have been developed. Some of these methods have proven to be relatively reliable, and their products are used in diverse Earth science applications. Nevertheless, analysis of these methods and feedback from product users indicate that use of fixed infrared temperature–based detection criteria often induces biases that can limit their utility for weather and climate analysis. This paper describes a new multispectral OT detection approach that improves upon those previously developed by minimizing use of fixed criteria and incorporating pattern recognition analyses to arrive at an OT probability product. The product is developed and validated using OT and non-OT anvil regions identified by a human within MODIS imagery. The product offered high skill for discriminating between OTs and anvils and matched 69% of human OT identifications for a particular probability threshold with a false-detection rate of 18%, outperforming previously existing methods. The false-detection rate drops to 1% when OT-induced texture detected within visible imagery is used to constrain the IR-based OT probability product. The OT probability product is also shown to improve severe-storm detection over the United States by 20% relative to the best existing method.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3