Evaluation of single-footprint AIRS CH<sub>4</sub> profile retrieval uncertainties using aircraft profile measurements

Author:

Kulawik Susan S.,Worden John R.,Payne Vivienne H.,Fu DejianORCID,Wofsy Steven C.,McKain KathrynORCID,Sweeney ColmORCID,Daube Jr. Bruce C.,Lipton Alan,Polonsky Igor,He Yuguang,Cady-Pereira Karen E.,Dlugokencky Edward J.,Jacob Daniel J.,Yin YiORCID

Abstract

Abstract. We evaluate the uncertainties of methane optimal estimation retrievals from single-footprint thermal infrared observations from the Atmospheric Infrared Sounder (AIRS). These retrievals are primarily sensitive to atmospheric methane in the mid-troposphere through the lower stratosphere (∼2 to ∼17 km). We compare them to in situ observations made from aircraft during the HIAPER Pole to Pole Observations (HIPPO) and Atmospheric Tomography Mission (ATom) campaigns, and from the NOAA GML aircraft network, between the surface and 5–13 km, across a range of years, latitudes between 60∘ S to 80∘ N, and over land and ocean. After a global, pressure-dependent bias correction, we find that the land and ocean have similar biases and that the reported observation error (combined measurement and interference errors) of ∼27 ppb is consistent with the SD between aircraft and individual AIRS observations. A single observation has measurement (noise related) uncertainty of ∼17 ppb, a ∼20 ppb uncertainty from radiative interferences (e.g., from water or temperature), and ∼30 ppb due to “smoothing error”, which is partially removed when making comparisons to in situ measurements or models in a way that accounts for this regularization. We estimate a 10 ppb validation uncertainty because the aircraft typically did not measure methane at altitudes where the AIRS measurements have some sensitivity, e.g., the stratosphere, and there is uncertainty in the truth that we validate against. Daily averaging only partly reduces the difference between aircraft and satellite observation, likely because of correlated errors introduced into the retrieval from temperature and water vapor. For example, averaging nine observations only reduces the aircraft–model difference to ∼17 ppb vs. the expected ∼10 ppb. Seasonal averages can reduce this ∼17 ppb uncertainty further to ∼10 ppb, as determined through comparison with NOAA aircraft, likely because uncertainties related to radiative effects of temperature and water vapor are reduced when averaged over a season.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spectral Fingerprinting of Methane from Hyper-Spectral Sounder Measurements Using Machine Learning and Radiative Kernel-Based Inversion;Remote Sensing;2024-02-02

2. Spatiotemporal Variability of Global Atmospheric Methane Observed from Two Decades of Satellite Hyperspectral Infrared Sounders;Remote Sensing;2023-06-08

3. ESTIMATION OF METHANE FLOWS FROM SATELLITE DATA USING DATA ASSIMILATION METHODS;Сборник трудов XVIII Российской конференции "РАСПРЕДЕЛЕННЫЕ ИНФОРМАЦИОННО-ВЫЧИСЛИТЕЛЬНЫЕ РЕСУРСЫ";2023-02-28

4. PCRTM-RA Enhancements for Improving CO Retrievals Using NAST-I Measurements From the FIREX-AQ Field Campaign;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2023

5. The Atmospheric Infrared Sounder;Handbook of Air Quality and Climate Change;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3