Spectral Fingerprinting of Methane from Hyper-Spectral Sounder Measurements Using Machine Learning and Radiative Kernel-Based Inversion

Author:

Wu Wan1ORCID,Liu Xu1ORCID,Xiong Xiaozhen1ORCID,Yang Qiguang2,Zhou Lihang3ORCID,Lei Liqiao2,Zhou Daniel K.1ORCID,Larar Allen M.1

Affiliation:

1. NASA Langley Research Center, Hampton, VA 23681, USA

2. ADNET Systems Inc., Bethesda, MD 20817, USA

3. NOAA JPSS Program Office, Silver Spring, MD 20706, USA

Abstract

Satellite-based hyper-spectral infrared (IR) sensors such as the Atmospheric Infrared Sounder (AIRS), the Cross-track Infrared Sounder (CrIS), and the Infrared Atmospheric Sounding Interferometer (IASI) cover many methane (CH4) spectral features, including the ν1 vibrational band near 1300 cm−1 (7.7 μm); therefore, they can be used to monitor CH4 concentrations in the atmosphere. However, retrieving CH4 remains a challenge due to the limited spectral information provided by IR sounder measurements. The information required to resolve the weak absorption lines of CH4 is often obscured by interferences from signals originating from other trace gases, clouds, and surface emissions within the overlapping spectral region. Consequently, currently available CH4 data product derived from IR sounder measurements still have large errors and uncertainties that limit their application scope for high-accuracy climate and environment monitoring applications. In this paper, we describe the retrieval of atmospheric CH4 profiles using a novel spectral fingerprinting methodology and our evaluation of performance using measurements from the CrIS sensor aboard the Suomi National Polar-orbiting Partnership (SNPP) satellite. The spectral fingerprinting methodology uses optimized CrIS radiances to enhance the CH4 signal and a machine learning classifier to constrain the physical inversion scheme. We validated our results using the atmospheric composition reanalysis results and data from airborne in situ measurements. An inter-comparison study revealed that the spectral fingerprinting results can capture the vertical variation characteristics of CH4 profiles that operational sounder products may not provide. The latitudinal variations in CH4 concentration in these results appear more realistic than those shown in existing sounder products. The methodology presented herein could enhance the utilization of satellite data to comprehend methane’s role as a greenhouse gas and facilitate the tracking of methane sources and sinks with increased reliability.

Funder

NASA 2017 Research Opportunities in Space and Earth Sciences

NASA 2020 ROSES solicitation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3