Hydrological characterisation of stalagmite dripwaters at Grotte de Villars, Dordogne, by the analysis of inorganic species and luminescent organic matter

Author:

Baker A.,Genty D.,Fairchild I. J.

Abstract

Abstract. Five stalagmite drip-waters in the Grotte de Villars, Dordogne, have been monitored from early 1997 to early 1998, for variations in discharge, major inorganic species and dissolved luminescent organic matter. When compared to surface precipitation, each drip-water has a subtly different response, both in terms of discharge variability and lag time between surface precipitation and drip rate response. Calculated water excess is shown to be important in determining drip-water discharge; during periods of soil moisture deficit, drip-waters either show no response to surface precipitation, or in the case of one sample station, respond only to high intensity and/or high quantity precipitation events. All drip-waters have a large storage component to their flow. Four sample stations have a similar hydrochemical and luminescence response, although the precise timing and magnitude of the responses may vary between drip sources that are <5 m apart. Drip-water luminescence intensity increases in winter and spring, and increases in discharge lag by 2 – 3 months, suggesting that the water in the rising limb and peak of the winter discharge comes from the stored groundwater component rather than a soil source. Drip-water strontium anti-correlates with luminescence and exhibits a strong (±100%) seasonal variation, with high-strontium waters derived from stored groundwater and is inferred to originate in localised Sr-rich primary components in the limestone. Drip-water conductivity reflects Ca-HCO3 variations and falls during late summer to autumn, which is inferred to result from increased calcite precipitation above the cave with enhanced degassing related to progressive drying of the aquifer. Drip-water magnesium (following removal of the marine aerosol component) is just above detection limits and does not show strong seasonal variations. Variations in solution Pco2 occur, with a particularly strong increase in early 1997. The various chemical trends are observed at a number of different sites despite a pronounced variation between them in terms of total Ca-HCO3 mineralisation and Pco2. One sampling station of the five investigated had a different response to surface precipitation; drip discharge was more variable, with evidence of non-linear responses, and luminescence intensity exhibited a dilution response to drip rate. For this site, flow switching occurred at times of high rainfall, with a rapid discharge response less than 24 hours after rainfall. Luminescence intensity, inorganic chemistry, and discharge characteristics at the site are compared with results published from other cave systems; significant inter-site variability depends on the geology, depth of sample sites and extent of karstification. This suggests that the interpretation of stalagmite luminescence, and variations in Sr, Ca and Mg must be considered on a site by site basis. Keywords: stalagmite; dripwaters; luminescence; discharge; major ion chemistry

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3