Analysis of the Three-Dimensional Fluorescence Spectroscopy Characteristics of Dissolved Organic Matter in Groundwater from a Subtropical Cave in Dry Season—Daxiao Cave in South China Karst

Author:

Zhang Renkai,Liu Ziqi,Xiong Kangning,Lyu Xiaoxi,Hu Chenpeng,Wang Xinwen,Cheng Kun

Abstract

Groups in dissolved organic matter (DOM) emit fluorescence information at characteristic wavelengths when irradiated by excitation waves, which can reveal the geochemical behavior of dissolved organic matter in the environment and its sources, but there are few relevant studies in cave groundwater systems. In order to investigate the relationship between drip hydrochemistry characteristics and DOM in cave systems after subsurface leakage, in this study, from the perspective of dissolved organic matter in the karst cave water system, the groundwater in the dry season of Daxiao Cave was selected as the research object. Five drip points and one water pool (DX-1, DX-2, DX-3, DX-4, DX-5, and DX-C) in Daxiao Cave were monitored and consecutively sampled for four months. The parallel factor analysis method (PARAFAC), three-dimensional (3D) fluorescence parameters, and excitation-emission matrix fluorescence spectroscopy (EEM), combined with the hydrochemistry characteristics of the drip water and correlation analysis, were used to analyze the 3D fluorescence spectral characteristics of the DOM of the drip water of Daxiao Cave and their influencing factors. The results show that (1) the hydrochemistry type of the drip water in Daxiao Cave was within the Ca–Mg–HCO3 type, and Ca2+, Mg2+, and HCO3− were the dominant ions in Daxiao Cave; (2) the fluorescence fractions of drip water in dry season caves were dominated by C1 (humus-like), C2 (tryptophan-like), and C3 (tyrosine-like), and the fluorescence fractions of drip water DOM were controlled by protein fluorophores; (3) the DOM in the drip water of Daxiao Cave in the dry season was controlled in part by subsurface leakage and was largely the result of microbial degradation; and (4) the DOM of the drip water may be influenced by the chemical composition of the water, but the exact process is not clear.

Funder

the World Top Discipline Program of Guizhou Provence

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3