Relationship analysis of PM<sub>2.5</sub> and boundary layer height using an aerosol and turbulence detection lidar

Author:

Wang Chong,Jia MingjiaoORCID,Xia HaiyunORCID,Wu Yunbin,Wei Tianwen,Shang Xiang,Yang Chengyun,Xue XianghuiORCID,Dou Xiankang

Abstract

Abstract. The atmospheric boundary layer height (BLH) is a key parameter in weather forecasting and air quality prediction. To investigate the relationship between BLH and air pollution under different conditions, a compact micro-pulse lidar integrating both direct-detection lidar (DDL) and coherent Doppler wind lidar (CDWL) has been built. This hybrid lidar is operated at 1.5 µm, which is eye-safe and made of all-fibre components. The BLH can be determined from aerosol density and vertical wind independently. During a 45 h continuous observation in June 2018, the stable boundary layer, residual layer and convective boundary layer are identified. The fine structure of the aerosol layers, drizzles and vertical wind near the cloud base are also detected. In comparison, the standard deviation between BLH values derived from DDL and CDWL is 0.06 km, indicating the accuracy of this work. The retrieved convective BLH is a little higher than that from ERA5 reanalysis due to different retrieval methods. Correlation between different BLH and PM2.5 is strongly negative before a precipitation event and becomes much weaker after the precipitation. Different relationships between PM2.5 and BLH may result from different BLH retrieval methods, pollutant sources and meteorological conditions.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference50 articles.

1. Baars, H., Ansmann, A., Engelmann, R., and Althausen, D.: Continuous monitoring of the boundary-layer top with lidar, Atmos. Chem. Phys., 8, 7281–7296, https://doi.org/10.5194/acp-8-7281-2008, 2008.

2. Bonin, T. A., Carroll, B. J., Hardesty, R. M., Brewer, W. A., Hajny, K., Salmon, O. E., and Shepson, P. B.: Doppler Lidar Observations of the Mixing Height in Indianapolis Using an Automated Composite Fuzzy Logic Approach, J. Atmos. Ocean. Tech., 35, 473–490, https://doi.org/10.1175/jtech-d-17-0159.1, 2018.

3. Brooks, I. M.: Finding Boundary Layer Top: Application of a Wavelet Covariance Transform to Lidar Backscatter Profiles, J. Atmos. Ocean. Tech., 20, 1092–1105, https://doi.org/10.1175/1520-0426(2003)020&lt;1092:fbltao&gt;2.0.co;2, 2003.

4. Brunekreef, B. and Holgate, S. T.: Air pollution and health, The Lancet, 360, 1233–1242, https://doi.org/10.1016/s0140-6736(02)11274-8, 2002.

5. Campbell, J. R., Hlavka, D. L., Welton, E. J., Flynn, C. J., Turner, D. D., Spinhirne, J. D., Scott, V. S., and Hwang, I. H.: Full-time, eye-safe cloud and aerosol lidar observation at atmospheric radiation measurement program sites: Instruments and data processing, J. Atmos. Ocean. Tech., 19, 431–442, https://doi.org/10.1175/1520-0426(2002)019&lt;0431:Ftesca&gt;2.0.Co;2, 2002.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3