Biochemical piezoresistive sensors based on hydrogels for biotechnology and medical applications

Author:

Schmidt Ulrike,Jorsch Carola,Guenther Margarita,Gerlach Gerald

Abstract

Abstract. Many conventional analysis techniques achieve a high-detection sensitivity; however, they are equipment or time expensive due to a multi-step procedure. Sensor concepts, introduced in this work, using piezoresistive pressure sensor chips with integrated analyte-sensitive hydrogels enable inexpensive and robust biochemical sensors, which are miniaturized and in-line capable. For these sensor setups, it is important to optimize current established analyte-sensitive, reversible and biocompatible hydrogels for pH and glucose monitoring of chemical and biochemical processes. Therefore, low-viscous monomer mixtures based on hydroxypropyl methacrylate (HPMA), 2-(dimethylamino)ethyl methacrylate (DMAEMA), tetraethylene glycol dimethacrylate (TEGDMA) and ethylene glycol (EG) were prepared in molar ratios of 70∕30∕01∕20, 60∕40∕01∕20 and 60∕40∕02∕20, respectively. Redox-polymerization of these pre-gel solutions were realized with N,N,N′,N′-tetramethylethylenediamine and ammonium persulfate. The reversible pH-sensitive swelling behavior of hydrogels with compositions were compared. By using the photoinitiator 2-hydroxy-4′-(2-hydroxyethoxy)-2-methylpropiophenone, the free radical photopolymerization could be implemented leading to an increase of the swelling degree (SG). Glucose-sensitive hydrogels were prepared via immobilization of glucose oxidase in HPMA–DMAEMA–TEGDMA–EG hydrogel discs. These showed increasing swelling degrees with higher glucose concentrations in aqueous media and a reversible swelling behavior. The synthesized hydrogels were integrated in different piezoresistive sensors of different designs. The pH-depending course of the output voltage of a dip sensor with photopolymerized 60∕40∕02∕20 hydrogel was studied in detail. Besides the usage of a dip sensor, two implantable, parylene C-coated setups are presented. The implantable sensor with long isolated gold bond wires was proved to be functional even after storage in aqueous media for several days.

Publisher

Copernicus GmbH

Subject

Electrical and Electronic Engineering,Instrumentation

Reference24 articles.

1. Arndt, K.-F., Richter, A., Ludwig, S., Zimmermann, J., Kressler, J., Kuckling, D., and Adler, H. J.: Poly(vinyl alcohol)/poly(acrylic acid) hydrogels: FT-IR spectroscopic characterization of crosslinking reaction and work at transition point, Acta Polym., 50, 383–390, 1999.

2. Avula, M., Tathireddy, P., Cho, S., Rieth, L., Magda, J., and Solzbacher, F.: Implantable Biosensor Arrays Based On Smart Hydrogels And Piezoresistive Sensors For Continuous Metabolic Monitoring Procedia Engineering, Elsevier, Proc. Eurosensors XXV, 25, 1008–1011, 2011.

3. Bates, J.: pH-responsive hydrogel-based chemomechanical sensors designed for disposable bioreactor applications, The University of Utah, 2013.

4. Gerlach, G. and Arndt, K.-F. (Eds.): Hydrogel Sensors and Actuators: Engineering and Technology, Springer-Verlag, Berlin, Heidelberg, ISBN-13: 978-3-540-75644-6, 2009.

5. Gerlach, G. and Dötzel, W.: Introduction to Microsystem Technology – A Guide for Students, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, England, ISBN-13: 978-0-470-05861-9, 2008.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3