Global representation of tropical cyclone-induced short-term ocean thermal changes using Argo data

Author:

Cheng L.ORCID,Zhu J.,Sriver R. L.

Abstract

Abstract. Argo floats are used to examine tropical cyclone (TC) induced ocean thermal changes on the global scale by comparing temperature profiles before and after TC passage. We present a footprint method that analyzes cross-track thermal responses along all storm tracks during the period 2004–2012. We combine the results into composite representations of the vertical structure of the average thermal response for two different categories: tropical storms/tropical depressions (TS/TD) and hurricanes. The two footprint composites are functions of three variables: cross-track distance, water depth and time relative to TC passage. We find that this footprint strategy captures the major features of the upper-ocean thermal response to TCs on timescales up to 20 days when compared against previous case study results using in situ measurements. On the global scale, TCs are responsible for 1.87 PW (11.05 W m−2) of heat transfer annually from the global ocean to the atmosphere during storm passage (0–3 days). Of this total, 1.05 ± 0.20 PW (4.80 ± 0.85 W m−2) is caused by TS/TD and 0.82 ± 0.21 PW (6.25 ± 1.5 W m−2) is caused by hurricanes. Our findings indicate that ocean heat loss by TCs may be a substantial missing piece of the global ocean heat budget. Changes in ocean heat content (OHC) after storm passage are estimated by analyzing the temperature anomalies during wake recovery following storm events (4–20 days after storm passage) relative to pre-storm conditions. Results indicate the global ocean experiences a 0.75 ± 0.25 PW (5.98 ± 2.1 W m−2) heat gain annually for hurricanes. In contrast, under TS/TD conditions, the ocean experiences 0.41 ± 0.21 PW (1.90 ± 0.96 W m−2) ocean heat loss, suggesting the overall oceanic thermal response is particularly sensitive to the intensity of the event. The ocean heat uptake caused by all storms during the restorative stage is 0.34 PW.

Publisher

Copernicus GmbH

Subject

Cell Biology,Developmental Biology,Embryology,Anatomy

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3