Technical note: On the importance of a three-dimensional approach for modelling the transport of neustic microplastics

Author:

Jalón-Rojas IsabelORCID,Wang Xiao-Hua,Fredj ErickORCID

Abstract

Abstract. Understanding and estimating the distribution and transport of microplastics in marine environments has been recognized as a major global research issue. Most of the existing research on transport modelling has focused on low-density particles floating in surface waters, using a 2-D Lagrangian approach and ignoring the vertical displacement of particles. In this work, we evaluate to what extent the vertical movement of particles within surface waters by mixing processes may affect the horizontal transport and fate of microplastics. The aim is to determine whether a 2-D approach is sufficient for the accurate modelling of neustic-microplastics transport or whether a 3-D approach is necessary. For this purpose, we compare visually and statistically the microplastics transport patterns of three simulations in a coastal system: one using a 2-D approach; and two using a 3-D approach with weak and strong vertical turbulence, respectively. The 2-D simulation roughly reproduced the transport and accumulation patterns, but accurate results required a 3-D approach. This was particularly important for strong vertical turbulence and regions characterized by strong vertical current shear. Moreover, a 2-D approach can lead to errors in the results even with negligible turbulence due to simplifications in the velocity field. A 3-D modelling approach is therefore key to an accurate estimation and prediction of microplastics distribution in coastal systems and consequently for planning mitigation and cleaning programmes.

Publisher

Copernicus GmbH

Subject

Cell Biology,Developmental Biology,Embryology,Anatomy

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3