Characteristics, sources, and reactions of nitrous acid during winter at an urban site in the Central Plains Economic Region in China

Author:

Hao Qi,Jiang Nan,Zhang Ruiqin,Yang Liuming,Li Shengli

Abstract

Abstract. Nitrous acid (HONO) in the core city of the Central Plains Economic Region in China was measured using an ambient ion monitor from 9 to 31 January 2019. Measurement time intervals were classified into the following periods in accordance with the daily mean values of PM2.5: clean days (CDs), polluted days (PDs), and severely polluted days (SPDs). The HONO concentrations during CD, PD, and SPD periods were 1.2, 2.3, and 3.7 ppbv, respectively. The contributions of the homogeneous reaction, heterogeneous conversion, and direct emissions to HONO sources varied under different pollution levels. The mean values of the net HONO production of the homogeneous reaction (POH+NOnet) in CD, PD, and SPD periods were 0.13, 0.26, and 0.56 ppbv h−1, respectively. The average conversions of NO2 (CHONO) in CD, PD, and SPD periods were 0.72×10-2, 0.64×10-2, and 1.54×10-2 h−1, respectively, indicating that the heterogeneous conversion of NO2 was less important than the homogeneous reaction. Furthermore, the net production of the homogeneous reaction may have been the main factor in the increase of HONO under high-NOx conditions (i.e., when the concentration of NO was higher than that of NO2) at nighttime. Daytime HONO budget analysis showed that the mean values of the unknown source (Punknown) during CD, PD, and SPD periods were 0.26, 0.40, and 1.83 ppbv h−1, respectively. The values of POH+NOnet, CHONO, and Punknown in the SPDs period were comparatively larger than those in other periods, indicating that HONO participated in many reactions. The proportions of nighttime HONO sources also changed during the entire sampling period. Direct emissions and a heterogeneous reaction controlled HONO production in the first half of the night and provided a contribution that is larger than that of the homogeneous reaction. The proportion of homogenization gradually increased in the second half of the night due to the steady increase in NO concentrations. The hourly level of HONO abatement pathways, except for OH + HONO, was at least 0.22 ppbv h−1 in the SPDs period. The cumulative frequency distribution of the HONOemission∕HONO ratio (less than 20 %) was approximately 77 %, which suggested that direct emission was not important. The heterogeneous HONO production increased when the relative humidity (RH) increased, but it decreased when RH increased further. The average HONO∕NOx ratio (4.9 %) was more than twice the assumed globally averaged value (2.0 %).

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3