The Variation in Chemical Composition and Source Apportionment of PM2.5 before, during, and after COVID-19 Restrictions in Zhengzhou, China

Author:

Huang Jinting12,Cai Aomeng23,Wang Weisi4,He Kuan1,Zou Shuangshuang2,Ma Qingxia23

Affiliation:

1. College of Surveying and Mapping Engineering, Yellow River Conservancy Technical Institute, Kaifeng 475004, China

2. Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, College of Geography and Environmental Science, Henan University, Kaifeng 475004, China

3. Henan Key Laboratory of Integrated Air Pollution Control and Ecological Security, Kaifeng 475004, China

4. Henan Ecological and Environmental Monitoring Center, Zhengzhou 450007, China

Abstract

Despite significant improvements in air quality during and after COVID-19 restrictions, haze continued to occur in Zhengzhou afterwards. This paper compares ionic compositions and sources of PM2.5 before (2019), during (2020), and after (2021) the restrictions to explore the reasons for the haze. The average concentration of PM2.5 decreased by 28.5% in 2020 and 27.9% in 2021, respectively, from 102.49 μg m−3 in 2019. The concentration of secondary inorganic aerosols (SIAs) was 51.87 μg m−3 in 2019, which decreased by 3.1% in 2020 and 12.8% in 2021. In contrast, the contributions of SIAs to PM2.5 increased from 50.61% (2019) to 68.6% (2020) and 61.2% (2021). SIAs contributed significantly to PM2.5 levels in 2020–2021. Despite a 22~62% decline in NOx levels in 2020–2021, the increased O3 caused a similar NO3− concentration (20.69~23.00 μg m−3) in 2020–2021 to that (22.93 μg m−3) in 2019, hindering PM2.5 reduction in Zhengzhou. Six PM2.5 sources, including secondary inorganic aerosols, industrial emissions, coal combustion, biomass burning, soil dust, and traffic emissions, were identified by the positive matrix factorization model in 2019–2021. Compared to 2019, the reduction in PM2.5 from the secondary aerosol source in 2020 and 2021 was small, and the contribution of secondary aerosol to PM2.5 increased by 13.32% in 2020 and 12.94% in 2021. In comparison, the primary emissions, including biomass burning, traffic, and dust, were reduced by 29.71% in 2020 and 27.7% in 2021. The results indicated that the secondary production did not significantly contribute to the PM2.5 decrease during and after the COVID-19 restrictions. Therefore, it is essential to understand the formation of secondary aerosols under high O3 and low precursor gases to mitigate air pollution in the future.

Funder

Natural Science Foundation of China

project of science and technology of the Henan province for tackling key problems

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3