Vertical redistribution of moisture and aerosol in orographic mixed-phase clouds

Author:

Miltenberger Annette K.ORCID,Field Paul R.,Hill Adrian H.,Heymsfield Andrew J.ORCID

Abstract

Abstract. Orographic wave clouds offer a natural laboratory to investigate cloud microphysical processes and their representation in atmospheric models. Wave clouds impact the larger-scale flow by the vertical redistribution of moisture and aerosol. Here we use detailed cloud microphysical observations from the Ice in Clouds Experiment – Layer Clouds (ICE-L) campaign to evaluate the recently developed Cloud Aerosol Interacting Microphysics (CASIM) module in the Met Office Unified Model (UM) with a particular focus on different parameterizations for heterogeneous freezing. Modelled and observed thermodynamic and microphysical properties agree very well (deviation of air temperature <1 K; specific humidity <0.2 g kg−1; vertical velocity <1 m s−1; cloud droplet number concentration <40 cm−3), with the exception of an overestimated total condensate content and too long a sedimentation tail. The accurate reproduction of the environmental thermodynamic and dynamical wave structure enables the model to reproduce the right cloud in the right place and at the right time. All heterogeneous freezing parameterizations except Atkinson et al. (2013) perform reasonably well, with the best agreement in terms of the temperature dependency of ice crystal number concentrations for the parameterizations of DeMott et al. (2010) and Tobo et al. (2013). The novel capabilities of CASIM allowed testing of the impact of assuming different soluble fractions of dust particles on immersion freezing, but this is found to only have a minor impact on hydrometeor mass and number concentrations. The simulations were further used to quantify the modification of moisture and aerosol profiles by the wave cloud. The changes in both variables are on order of 15 % of their upstream values, but the modifications have very different vertical structures for the two variables. Using a large number of idealized simulations we investigate how the induced changes depend on the wave period (100–1800 s), cloud top temperature (−15 to −50 ∘C), and cloud thickness (1–5 km) and propose a conceptual model to describe these dependencies.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3