Implementation of a double moment cloud microphysics scheme in the UK met office regional numerical weather prediction model

Author:

Field Paul R.12ORCID,Hill Adrian1ORCID,Shipway Ben1,Furtado Kalli1,Wilkinson Jonathan1ORCID,Miltenberger Annette3ORCID,Gordon Hamish24ORCID,Grosvenor Daniel P.2,Stevens Robin5ORCID,Van Weverberg Kwinten16ORCID

Affiliation:

1. Met Office Exeter UK

2. School of Earth and Environment University of Leeds Leeds UK

3. Institute for Atmospheric Physics Johannes Gutenberg University Mainz Germany

4. Department of Chemical Engineering and Center for Atmospheric Particle Studies Carnegie Mellon University Pennsylvania Pittsburgh USA

5. Department of Chemistry Université de Montréal Montréal Canada

6. Department of Geography Ghent University Belgium

Abstract

AbstractCloud microphysics parametrizations control the transfer of water between phases and hydrometeor species in numerical weather prediction and climate models. As a fundamental component of weather modelling systems cloud microphysics can determine the intensity and timing of precipitation, the extent and longevity of cloud cover and its impact on radiative balance, and directly influence near surface weather metrics such as temperature and wind. In this paper we introduce and demonstrate the performance of a double moment cloud microphysical scheme (CASIM: Cloud AeroSol Interacting Microphysics) in both midlatitude and tropical settings using the same model configuration. Comparisons are made against a control configuration using the current operational single moment cloud microphysics, and CASIM configurations that use fixed in‐cloud droplet number or compute cloud droplet number concentration from the aerosol environment. We demonstrate that configuring CASIM as a single moment scheme results in precipitation rate histograms that match the operational single moment microphysics. In the midlatitude setting, results indicate that CASIM performs as well as the single moment microphysics configuration, but improves certain aspects of the surface precipitation field such as greater extent of light (1 mm hr) rain around frontal precipitation features. In the tropical setting, CASIM outperforms the single moment cloud microphysics as evident from improved comparison with radar derived precipitation rates.

Funder

H2020 Environment

Natural Environment Research Council

Newton Fund

Publisher

Wiley

Subject

Atmospheric Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3