The performance of a variable‐resolution 300‐m ensemble for forecasting convection over London

Author:

Hanley Kirsty1ORCID,Lean Humphrey1ORCID

Affiliation:

1. MetOffice@Reading UK

Abstract

AbstractWhen using sub‐km models to forecast convection, it is important to have a large enough domain to allow convection to fully spin‐up from the lateral boundaries. However, running large domains is computationally expensive and while it may be feasible for research purposes it is not yet feasible for routinely run models, such as the Met Office 300‐m London model. To try and mitigate the spin‐up issues in the London model, a variable‐resolution 300‐m London Model (the ‘LMV’) has been developed, which allows the boundaries of the London model to be further away from areas of interest (e.g., London Heathrow) at lower computational cost. Results from several cases of summertime convection show that the convective storms in the variable‐resolution model are more like those in a large fixed‐resolution 300‐m model than those in the much smaller London model. This implies variable resolution is a viable option for increasing the size of the London model domain without increasing the computational costs too much. Extended evaluation of the LMV was conducted during summer 2022, running as an ensemble nested inside the Met Office's operational UK ensemble (MOGREPS‐UK). Overall, the LMV looks promising for high‐impact convective events as it is better able to represent the organisation of convection into lines or larger storms whereas MOGREPS‐UK tends to simulate isolated, circular storms. This often leads to more reliable probabilities of heavy rainfall in the LMV ensemble compared to MOGREPS‐UK. However, there is an issue with the LMV producing too many small precipitating showers in situations where there should only be shallow clouds. This is thought to be a result of shallow clouds getting too deep in the model and precipitating erroneously.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3