Lengthening of the growth season, not increased water availability, increased growth of Picea likiangensis var. rubescens plantations on eastern Tibetan Plateau due to climate change

Author:

Feng YuORCID,Shi Songlin,Peng Peihao,Zhou Qiang,Wang Haijun,Liu Xiubin

Abstract

Abstract. On the eastern Tibetan Plateau, the growth of trees is strongly affected by climate change. Previous researchers have found that climate warming changes thermal and hydraulic conditions, lengthening the growing season and promoting tree growth. Some studies have analyzed the effects of drought, precipitation, and temperature on tree growth. However, previous studies have mainly focused on natural forests, with few studies on the response of plantations to climate change. Therefore, we studied the relationship between dendrochronology (basal area increment, BAI), normalized difference vegetation index (NDVI), and climate factors to explore the response of Picea likiangensis var. rubescens plantations to climate change. The results showed that from 1990 to 2018, the temperature in the study area increased significantly; the rate of increase was 0.39∘ per decade. Among the climate factors, self-calibrated Palmer drought severity index (scPDSI) had the most significant impact on BAI. From P_May (P_ represents the month of the previous year) to December, BAI was always negatively correlated with the scPDSI, with 9 months being significantly negatively correlated. BAI was significantly positively correlated with the minimum 2 m temperature (TMN) in P_July, P_September, July, and September. BAI was significantly positively correlated with the maximum 2 m temperature (TMX) in P_October, P_December, and July. BAI was significantly positively correlated with the mean 2 m temperature (TMP) in P_July, P_December, and July. There is a significant positive correlation between BAI and annual NDVI (NDVIa), which means that NDVI can be used to study the response of plantations to climate change. Our study contributes to a better understanding of the response of plantation growth in high-altitude areas to climate change, which is needed by forest managers.

Funder

National Key Research and Development Program of China

Publisher

Copernicus GmbH

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3