Why hydrological predictions should be evaluated using information theory

Author:

Weijs S. V.,Schoups G.,van de Giesen N.

Abstract

Abstract. Probabilistic predictions are becoming increasingly popular in hydrology. Equally important are methods to test such predictions, given the topical debate on uncertainty analysis in hydrology. Also in the special case of hydrological forecasting, there is still discussion about which scores to use for their evaluation. In this paper, we propose to use information theory as the central framework to evaluate predictions. From this perspective, we hope to shed some light on what verification scores measure and should measure. We start from the ''divergence score'', a relative entropy measure that was recently found to be an appropriate measure for forecast quality. An interpretation of a decomposition of this measure provides insight in additive relations between climatological uncertainty, correct information, wrong information and remaining uncertainty. When the score is applied to deterministic forecasts, it follows that these increase uncertainty to infinity. In practice, however, deterministic forecasts tend to be judged far more mildly and are widely used. We resolve this paradoxical result by proposing that deterministic forecasts either are implicitly probabilistic or are implicitly evaluated with an underlying decision problem or utility in mind. We further propose that calibration of models representing a hydrological system should be the based on information-theoretical scores, because this allows extracting all information from the observations and avoids learning from information that is not there. Calibration based on maximizing utility for society trains an implicit decision model rather than the forecasting system itself. This inevitably results in a loss or distortion of information in the data and more risk of overfitting, possibly leading to less valuable and informative forecasts. We also show this in an example. The final conclusion is that models should preferably be explicitly probabilistic and calibrated to maximize the information they provide.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3