Information-Based Skill Scores for Probabilistic Forecasts

Author:

Ahrens Bodo1,Walser André2

Affiliation:

1. ETH, Zurich, Switzerland, and IAU, Goethe-University Frankfurt, Frankfurt, Germany

2. Federal Office of Meteorology and Climatology, MeteoSwiss, Zurich, Switzerland

Abstract

Abstract The information content, that is, the predictive capability, of a forecast system is often quantified with skill scores. This paper introduces two ranked mutual information skill (RMIS) scores, RMISO and RMISY, for the evaluation of probabilistic forecasts. These scores are based on the concept of mutual information of random variables as developed in information theory. Like the ranked probability skill score (RPSS)—another and often applied skill score—the new scores compare cumulative probabilities for multiple event thresholds. The RMISO quantifies the fraction of information in the observational data that is explained by the forecasts. The RMISY quantifies the amount of useful information in the forecasts. Like the RPSS, the new scores are biased, but they can be debiased with a simple and robust method. This and additional promising characteristics of the scores are discussed with ensemble forecast assessment experiments.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3