Measurement report: Aircraft observations of ozone, nitrogen oxides, and volatile organic compounds over Hebei Province, China
-
Published:2020-11-30
Issue:23
Volume:20
Page:14523-14545
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Benish Sarah E., He HaoORCID, Ren XinrongORCID, Roberts Sandra J., Salawitch Ross J., Li ZhanqingORCID, Wang Fei, Wang YuyingORCID, Zhang FangORCID, Shao Min, Lu Sihua, Dickerson Russell R.ORCID
Abstract
Abstract. To provide insight into the planetary boundary layer (PBL) production of ozone (O3) over the North China Plain, the Air chemistry Research in Asia (ARIAs) campaign conducted aircraft measurements of air pollutants over Hebei Province, China, between May and June 2016. We evaluate vertical profiles of trace gas species including O3, nitrogen oxides (NOx), carbon monoxide (CO), and volatile organic compounds (VOCs) and relate to rates of O3 production. This analysis shows measured O3 levels ranged from 45 to 146 ppbv, with the peak median concentration (∼ 92 ppbv) occurring between 1000 and 1500 m. The NOx concentrations exhibited strong spatial and altitudinal variations, with a maximum of 53 ppbv. Ratios of CO∕CO2 indicate the prevalence of low-efficiency combustion from biomass burning and residential coal burning but indicate some success of regional pollution controls compared to earlier studies in China. Concentrations of total measured VOCs reveal alkanes dominate the total measured volume mixing ratio of VOCs (68 %), and sources include vehicular emissions, fuel and solvent evaporation, and biomass burning. Alkanes and alkenes/alkynes are responsible for 74 % of the total VOC reactivity assessed by calculating the OH loss rates, while aromatics contribute the most to the total ozone formation potential (OFP) (43 %) with toluene, m/p-xylene, ethylene, propylene, and i-pentane playing significant roles in the aloft production of O3 in this region. In the PBL below 500 m, box model calculations constrained by measured precursors indicate the peak rate of mean O3 production was ∼ 7 ppbv h−1. Pollution frequently extended above the PBL into the lower free troposphere around 3000 m, where NO2 mixing ratios (∼ 400 pptv) led to net production rates of O3 up to ∼ 3 ppbv h−1; this pollution can travel substantial distances downwind. The O3 sensitivity regime is determined to be NOx-limited throughout the PBL, whereas it is more VOC-limited at low altitudes near urban centers, demonstrating that control of both VOCs and NOx is needed to reduce aloft O3 pollution over Hebei.
Funder
Directorate for Geosciences
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference132 articles.
1. Al-Saadi, J., Carmichael, G., Crawford, J., Emmons, L., Kim, S., Song, C. K., Chang, L. S., Lee, G., Kim, J., and Park, R.: NASA Contributions to KORUS-AQ: An International Cooperative Air Quality Field Study in Korea, available at: https://www-air.larc.nasa.gov/missions/korus-aq/docs/White_paper_NASA_KORUS-AQ.pdf (last access: 27 November 2020), 2015. 2. An, J., Wang, J., Zhang, Y., and Zhu, B.: Source Apportionment of Volatile Organic Compounds in an Urban Environment at the Yangtze River Delta, China, Arch. Environ. Con. Tox., 72, 335–348, https://doi.org/10.1007/s00244-017-0371-3, 2017. 3. An, Z., Huang, R. J., Zhang, R., Tie, X., Li, G., Cao, J., Zhou, W., Shi, Z., Han, Y., Gu, Z., and Ji, Y.: Severe haze in northern China: A synergy of anthropogenic emissions and atmospheric processes, P. Natl. Acad. Sci. USA, 116, 8657–8666, https://doi.org/10.1073/pnas.1900125116, 2019. 4. Andreae, M. O. and Merlet, P.: Emission of trace gases and aerosols from biomass burning, Global Biogeochem. Cy., 15, 955–966, https://doi.org/10.1029/2000GB001382, 2001. 5. Apel, E. C., Emmons, L. K., Karl, T., Flocke, F., Hills, A. J., Madronich, S., Lee-Taylor, J., Fried, A., Weibring, P., Walega, J., Richter, D., Tie, X., Mauldin, L., Campos, T., Weinheimer, A., Knapp, D., Sive, B., Kleinman, L., Springston, S., Zaveri, R., Ortega, J., Voss, P., Blake, D., Baker, A., Warneke, C., Welsh-Bon, D., de Gouw, J., Zheng, J., Zhang, R., Rudolph, J., Junkermann, W., and Riemer, D. D.: Chemical evolution of volatile organic compounds in the outflow of the Mexico City Metropolitan area, Atmos. Chem. Phys., 10, 2353–2375, https://doi.org/10.5194/acp-10-2353-2010, 2010.
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|