Estimating CH<sub>4</sub>, CO<sub>2</sub> and CO emissions from coal mining and industrial activities in the Upper Silesian Coal Basin using an aircraft-based mass balance approach
-
Published:2020-11-03
Issue:21
Volume:20
Page:12675-12695
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Fiehn AlinaORCID, Kostinek Julian, Eckl Maximilian, Klausner TheresaORCID, Gałkowski MichałORCID, Chen JinxuanORCID, Gerbig ChristophORCID, Röckmann ThomasORCID, Maazallahi HosseinORCID, Schmidt Martina, Korbeń Piotr, Neçki Jarosław, Jagoda PawelORCID, Wildmann NormanORCID, Mallaun Christian, Bun Rostyslav, Nickl Anna-Leah, Jöckel PatrickORCID, Fix AndreasORCID, Roiger Anke
Abstract
Abstract. A severe reduction of greenhouse gas emissions is
necessary to reach the objectives of the Paris Agreement. The implementation
and continuous evaluation of mitigation measures requires regular
independent information on emissions of the two main anthropogenic
greenhouse gases, carbon dioxide (CO2) and methane (CH4). Our aim
is to employ an observation-based method to determine regional-scale
greenhouse gas emission estimates with high accuracy. We use aircraft- and
ground-based in situ observations of CH4, CO2, carbon monoxide
(CO), and wind speed from two research flights over the Upper Silesian Coal
Basin (USCB), Poland, in summer 2018. The flights were performed as a part
of the Carbon Dioxide and Methane (CoMet) mission above this European
CH4 emission hot-spot region. A kriging algorithm interpolates the
observed concentrations between the downwind transects of the trace gas
plume, and then the mass flux through this plane is calculated. Finally,
statistic and systematic uncertainties are calculated from measurement
uncertainties and through several sensitivity tests, respectively. For the two selected flights, the in-situ-derived annual CH4 emission
estimates are 13.8±4.3 and 15.1±4.0 kg s−1, which are
well within the range of emission inventories. The regional emission
estimates of CO2, which were determined to be 1.21±0.75 and
1.12±0.38 t s−1, are in the lower range of emission inventories. CO
mass balance emissions of 10.1±3.6 and 10.7±4.4 kg s−1
for the USCB are slightly higher than the emission inventory values. The
CH4 emission estimate has a relative error of 26 %–31 %, the
CO2 estimate of 37 %–62 %, and the CO estimate of 36 %–41 %. These
errors mainly result from the uncertainty of atmospheric background mole
fractions and the changing planetary boundary layer height during the
morning flight. In the case of CO2, biospheric fluxes also add to the
uncertainty and hamper the assessment of emission inventories. These
emission estimates characterize the USCB and help to verify emission
inventories and develop climate mitigation strategies.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference59 articles.
1. Alvarez, R. A., Zavala-Araiza, D., Lyon, D. R., Allen, D. T., Barkley, Z.
R., Brandt, A. R., Davis, K. J., Herndon, S. C., Jacob, D. J., Karion, A.,
Kort, E. A., Lamb, B. K., Lauvaux, T., Maasakkers, J. D., Marchese, A. J.,
Omara, M., Pacala, S. W., Peischl, J., Robinson, A. L., Shepson, P. B.,
Sweeney, C., Townsend-Small, A., Wofsy, S. C., and Hamburg, S. P.:
Assessment of methane emissions from the U.S. oil and gas supply chain,
Science, 361, 186–188, https://doi.org/10.1126/science.aar7204, 2018. 2. Amediek, A., Ehret, G., Fix, A., Wirth, M., Büdenbender, C.,
Quatrevalet, M., Kiemle, C., and Gerbig, C.: CHARM-F – a new airborne
integrated-path differential-absorption lidar for carbon dioxide and methane
observations: measurement performance and quantification of strong point
source emissions, Appl. Opt., 56, 5182–5197, https://doi.org/10.1364/AO.56.005182, 2017. 3. Barkley, Z. R., Lauvaux, T., Davis, K. J., Deng, A., Fried, A., Weibring,
P., Richter, D., Walega, J. G., DiGangi, J., Ehrman, S. H., Ren, X., and
Dickerson, R. R.: Estimating Methane Emissions From Underground Coal and
Natural Gas Production in Southwestern Pennsylvania, Geophys. Res.
Lett., 46, 4531–4540, https://doi.org/10.1029/2019gl082131, 2019. 4. Bergamaschi, P., Karstens, U., Manning, A. J., Saunois, M., Tsuruta, A., Berchet, A., Vermeulen, A. T., Arnold, T., Janssens-Maenhout, G., Hammer, S., Levin, I., Schmidt, M., Ramonet, M., Lopez, M., Lavric, J., Aalto, T., Chen, H., Feist, D. G., Gerbig, C., Haszpra, L., Hermansen, O., Manca, G., Moncrieff, J., Meinhardt, F., Necki, J., Galkowski, M., O'Doherty, S., Paramonova, N., Scheeren, H. A., Steinbacher, M., and Dlugokencky, E.: Inverse modelling of European CH4 emissions during 2006–2012 using different inverse models and reassessed atmospheric observations, Atmos. Chem. Phys., 18, 901–920, https://doi.org/10.5194/acp-18-901-2018, 2018. 5. Brioude, J., Angevine, W. M., Ahmadov, R., Kim, S.-W., Evan, S., McKeen, S. A., Hsie, E.-Y., Frost, G. J., Neuman, J. A., Pollack, I. B., Peischl, J., Ryerson, T. B., Holloway, J., Brown, S. S., Nowak, J. B., Roberts, J. M., Wofsy, S. C., Santoni, G. W., Oda, T., and Trainer, M.: Top-down estimate of surface flux in the Los Angeles Basin using a mesoscale inverse modeling technique: assessing anthropogenic emissions of CO, NOx and CO2 and their impacts, Atmos. Chem. Phys., 13, 3661–3677, https://doi.org/10.5194/acp-13-3661-2013, 2013.
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|