Unmanned aerial vehicles equipped with sensor packages to study spatiotemporal variations of air pollutants in industry parks

Author:

Chen Lang1,Pang Xiaobing1ORCID,Wu Zhentao1,Huang Riyang1,Hu Junyu1,Liu Yi2,Zhou Lei1,Zhou Jue1,Wang Zhiwen1

Affiliation:

1. College of Environment, Zhejiang University of Technology , Hangzhou, Zhejiang Province 310014, People’s Republic of China

2. Safety, Environment and Technology Supervision Research Institute of PetroChina Southwest Oil and Gas Field Company , Chengdu 610041, People’s Republic of China

Abstract

Unmanned aerial vehicles (UAVs) equipped with a miniaturized sensor package were developed for aerial observations, which realizes aerial observations affordable to scientists in atmospheric science and achieves aerial measurements in high spatial resolution. UAVs are deployed to a variety of aerial detecting tasks in different scientific scenarios including chemical industry parks (CIPs) with hazardous gases emissions, and some places difficult for humans to reach. In this study, UAV sensing technology was deployed to detect air pollutants in a suburb, a CIP and a natural gas plant, respectively. The effects of atmospheric conditions such as the atmospheric boundary layer height, long-distance transport and atmospheric stability on the spatiotemporal variations of the air pollutants vertical profiles were investigated by the UAV. The UAV with the sensor package was deployed to capture the methane (CH 4 ) leakages in a natural gas plant. The spatiotemporal variations of CH 4 in both vertical and horizontal directions studied by UAV were employed to calculate accurate CH 4 emissions, which is crucial to reducing the emissions of greenhouse gases. The low-cost UAV sensing technology for air pollutants was developed by Dr. Xiaobing Pang, who was funded by the Newton Fellowship in 2009 and worked in the University of York. This article is part of the theme issue ‘Celebrating the 15th anniversary of the Royal Society Newton International Fellowship’.

Funder

National Natural Science Foundation of China

'Lingyan' Research and Development Program of Zhejiang Province

Shaoxing Science and Technology Plan Project

Publisher

The Royal Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3