Chemical composition and source apportionment of atmospheric aerosols on the Namibian coast

Author:

Klopper DanitzaORCID,Formenti PaolaORCID,Namwoonde AndreasORCID,Cazaunau Mathieu,Chevaillier Servanne,Feron Anaïs,Gaimoz Cécile,Hease Patrick,Lahmidi Fadi,Mirande-Bret Cécile,Triquet SylvainORCID,Zeng Zirui,Piketh Stuart J.

Abstract

Abstract. The chemical composition of aerosols is of particular importance to assess their interactions with radiation, clouds and trace gases in the atmosphere and consequently their effects on air quality and the regional climate. In this study, we present the results of the first long-term dataset of the aerosol chemical composition at an observatory on the coast of Namibia, facing the south-eastern Atlantic Ocean. Aerosol samples in the mass fraction of particles smaller than 10 µm in aerodynamic diameter (PM10) were collected during 26 weeks between 2016 and 2017 at the ground-based Henties Bay Aerosol Observatory (HBAO; 22∘6′ S, 14∘30′ E; 30 m above mean sea level). The resulting 385 filter samples were analysed by X-ray fluorescence and ion chromatography for 24 inorganic elements and 15 water-soluble ions. Statistical analysis by positive matrix factorisation (PMF) identified five major components, sea salt (mass concentration: 74.7±1.9 %), mineral dust (15.7±1.4 %,), ammonium neutralised (6.1±0.7 %), fugitive dust (2.6±0.2 %) and industry (0.9±0.7 %). While the contribution of sea salt aerosol was persistent, as the dominant wind direction was south-westerly and westerly from the open ocean, the occurrence of mineral dust was episodic and coincided with high wind speeds from the south-south-east and the north-north-west, along the coastline. Concentrations of heavy metals measured at HBAO were higher than reported in the literature from measurements over the open ocean. V, Cd, Pb and Nd were attributed to fugitive dust emitted from bare surfaces or mining activities. As, Zn, Cu, Ni and Sr were attributed to the combustion of heavy oils in commercial ship traffic across the Cape of Good Hope sea route, power generation, smelting and other industrial activities in the greater region. Fluoride concentrations up to 25 µg m−3 were measured, as in heavily polluted areas in China. This is surprising and a worrisome result that has profound health implications and deserves further investigation. Although no clear signature for biomass burning could be determined, the PMF ammonium-neutralised component was described by a mixture of aerosols typically emitted by biomass burning, but also by other biogenic activities. Episodic contributions with moderate correlations between NO3-, nss-SO42- (higher than 2 µg m−3) and nss-K+ were observed, further indicative of the potential for an episodic source of biomass burning. Sea salt accounted for up to 57 % of the measured mass concentrations of SO42-, and the non-sea salt fraction was contributed mainly by the ammonium-neutralised component and small contributions from the mineral dust component. The marine biogenic contribution to the ammonium-neutralised component is attributed to efficient oxidation in the moist marine atmosphere of sulfur-containing gas phase emitted by marine phytoplankton in the fertile waters offshore in the Benguela Upwelling System. The data presented in this paper provide the first ever information on the temporal variability of aerosol concentrations in the Namibian marine boundary layer. This data also provide context for intensive observations in the area.

Funder

Centre National de la Recherche Scientifique

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3