Fractional solubility of iron in mineral dust aerosols over coastal Namibia: a link to marine biogenic emissions?
-
Published:2024-01-31
Issue:2
Volume:24
Page:1525-1541
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Desboeufs Karine, Formenti PaolaORCID, Torres-Sánchez Raquel, Schepanski Kerstin, Chaboureau Jean-PierreORCID, Andersen HendrikORCID, Cermak JanORCID, Feuerstein Stefanie, Laurent Benoit, Klopper Danitza, Namwoonde AndreasORCID, Cazaunau Mathieu, Chevaillier Servanne, Feron Anaïs, Mirande-Bret Cécile, Triquet Sylvain, Piketh Stuart J.
Abstract
Abstract. This paper presents the first investigation of the solubility of iron in mineral dust aerosols collected at the Henties Bay Aerosol Observatory (HBAO), in Namibia, from April to December 2017. During the study period, 10 intense dust events occurred. Elemental iron reached peak concentrations as high as 1.5 µg m−3, significantly higher than background levels. These events are attributed to wind erosion of natural soils from the surrounding gravel plains of the Namib desert. The composition of the sampled dust is found to be overall similar to that of aerosols from northern Africa but is characterized by persistent and high concentrations of fluorine which are attributed to local fugitive dust. The fractional solubility of Fe (%SFe) for both the identified dust episodes and background conditions ranged between 1.3 % and 20 % and averaged at 7.9 % (±4.1 %) and 6.8 (±3.3 %), respectively. Even under background conditions, the %SFe was correlated with that of Al and Si. The solubility was lower between June and August and increased from September onwards during the austral spring. The relation to measured concentrations of particulate MSA (methane sulfonic acid), solar irradiance, and wind speed suggests a possible two-way interaction whereby marine biogenic emissions from the coastal Benguela upwelling to the atmosphere would increase the solubility of iron-bearing dust according to the photo-reduction processes. This first investigation points to the western coast of southern Africa as a complex environment with multiple processes and active exchanges between the atmosphere and the Atlantic Ocean, requiring further research.
Publisher
Copernicus GmbH
Reference93 articles.
1. Andersen, H. and Cermak, J.: First fully diurnal fog and low cloud satellite detection reveals life cycle in the Namib, Atmos. Meas. Tech., 11, 5461–5470, https://doi.org/10.5194/amt-11-5461-2018, 2018. 2. Andersen, H., Cermak, J., Solodovnik, I., Lelli, L., and Vogt, R.: Spatiotemporal dynamics of fog and low clouds in the Namib unveiled with ground- and space-based observations, Atmos. Chem. Phys., 19, 4383–4392, https://doi.org/10.5194/acp-19-4383-2019, 2019. 3. Andersen, H., Cermak, J., Fuchs, J., Knippertz, P., Gaetani, M., Quinting, J., Sippel, S., and Vogt, R.: Synoptic-scale controls of fog and low-cloud variability in the Namib Desert, Atmos. Chem. Phys., 20, 3415–3438, https://doi.org/10.5194/acp-20-3415-2020, 2020. 4. Andreae, M. O., Elbert, W., and de Mora, S. J.: Biogenic sulfur emissions and aerosols over the tropical South Atlantic: 3. Atmospheric dimethylsulfide, aerosols and cloud condensation nuclei, J. Geophys. Res., 100, 11335–11356, https://doi.org/10.1029/94JD02828, 1995. 5. Annegarn, H. J., van Grieken, R. E., Bibby, D. M., and von Blottnitz, F.: Background Aerosol Composition in the Namib Desert, South West Africa (Namibia), Atmos. Environ., 17, 2045–2053, https://doi.org/10.1016/0004-6981(83)90361-X, 1983.
|
|