Trends of atmospheric water vapour in Switzerland from ground-based radiometry, FTIR and GNSS data
-
Published:2020-10-01
Issue:19
Volume:20
Page:11223-11244
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Bernet LeonieORCID, Brockmann ElmarORCID, von Clarmann Thomas, Kämpfer Niklaus, Mahieu EmmanuelORCID, Mätzler Christian, Stober GunterORCID, Hocke KlemensORCID
Abstract
Abstract. Vertically integrated water vapour (IWV) is expected to increase globally in a warming climate.
To determine whether IWV increases as expected on a regional scale, we present IWV trends in Switzerland from ground-based remote sensing techniques and reanalysis models, considering data for the time period 1995 to 2018.
We estimate IWV trends from a ground-based microwave radiometer in Bern, from a Fourier transform infrared (FTIR) spectrometer at Jungfraujoch, from reanalysis data (ERA5 and MERRA-2) and from Swiss ground-based Global Navigation Satellite System (GNSS) stations.
Using a straightforward trend method, we account for jumps in the GNSS data, which are highly sensitive to instrumental changes.
We found that IWV generally increased by 2 % per decade to 5 % per decade, with deviating trends at some GNSS stations.
Trends were significantly positive at 17 % of all GNSS stations, which often lie at higher altitudes (between 850 and 1650 m above sea level).
Our results further show that IWV in Bern scales to air temperature as expected (except in winter), but the IWV–temperature relation based on reanalysis data in the whole of Switzerland is not clear everywhere.
In addition to our positive IWV trends, we found that the radiometer in Bern agrees within 5 % with GNSS and reanalyses.
At the Jungfraujoch high-altitude station, we found a mean difference of 0.26 mm (15 %)
between the FTIR and coincident GNSS data, improving to 4 %
after an antenna update in 2016.
In general, we showed that ground-based GNSS data are highly valuable for climate monitoring, given that the data have been homogeneously reprocessed and that instrumental changes are accounted for.
We found a response of IWV to rising temperature in Switzerland, which is relevant for projected changes in local cloud and precipitation processes.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference91 articles.
1. Alshawaf, F., Balidakis, K., Dick, G., Heise, S., and Wickert, J.: Estimating trends in atmospheric water vapor and temperature time series over Germany, Atmos. Meas. Tech., 10, 3117–3132, https://doi.org/10.5194/amt-10-3117-2017, 2017. a, b, c, d, e 2. Armour, K. C., Bitz, C. M., and Roe, G. H.: Time-Varying Climate Sensitivity
from Regional Feedbacks, J. Climate, 26, 4518–4534,
https://doi.org/10.1175/JCLI-D-12-00544.1, 2013. a 3. Begert, M. and Frei, C.: Long-term area-mean temperature series for
Switzerland–Combining homogenized station data and high resolution grid
data, Int. J. Climatol., 38, 2792–2807, https://doi.org/10.1002/joc.5460, 2018. a 4. Bengtsson, L., Hagemann, S., and Hodges, K. I.: Can climate trends be
calculated from reanalysis data?, J. Geophys. Res.-Atmos., 109, D11111,
https://doi.org/10.1029/2004JD004536, 2004. a 5. Bernet, L., von Clarmann, T., Godin-Beekmann, S., Ancellet, G., Maillard Barras, E., Stübi, R., Steinbrecht, W., Kämpfer, N., and Hocke, K.: Ground-based ozone profiles over central Europe: incorporating anomalous observations into the analysis of stratospheric ozone trends, Atmos. Chem. Phys., 19, 4289–4309, https://doi.org/10.5194/acp-19-4289-2019, 2019. a
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|