The Novel Copernicus Global Dataset of Atmospheric Total Water Vapour Content with Related Uncertainties from GNSS Observations

Author:

Rannat Kalev1,Keernik Hannes12ORCID,Madonna Fabio34ORCID

Affiliation:

1. Department of Software Science, Tallinn University of Technology, 19086 Tallinn, Estonia

2. Institute of Physics, University of Tartu, 50411 Tartu, Estonia

3. Department of Physics, University of Salerno, 84084 Fisciano, SA, Italy

4. Consiglio Nazionale delle Ricerche, Istituto di Metodologie per l’Analisi Ambientale, 85050 Tito Scalo, PZ, Italy

Abstract

A novel algorithm has been designed and implemented in the Climate Data Store (CDS) frame of the Copernicus Climate Change Service (C3S) with the main goal of providing high-quality GNSS-based integrated water vapour (IWV) datasets for climate research and applications. For this purpose, the related CDS GNSS datasets were primarily obtained from GNSS reprocessing campaigns, given their highest quality in adjusting systematic effects due to changes in instrumentation and data processing. The algorithm is currently applied to the International GNSS Service (IGS) tropospheric products, which are consistently extended in near real-time and date back to 2000, and to the results of a reprocessing campaign conducted by the EUREF Permanent GNSS Network (EPN repro2), covering the period from 1996 to 2014. The GNSS IWV retrieval employs ancillary meteorological data sourced from ERA5. Moreover, IWV estimates are provided with associated uncertainty, using an approach similar to that used for the Global Climate Observing System Reference Upper-Air Network (GRUAN) GNSS data product. To assess the quality of the newly introduced GNSS IWV datasets, a comparison is made against the radiosonde data from GRUAN and the Radiosounding HARMonization (RHARM) dataset as well as with the IGS repro3, which will be the next GNSS-based extension of IWV time series at CDS. The comparison indicates that the average difference in IWV among the reprocessed GNSS datasets is less than 0.1 mm. Compared to RHARM and GRUAN IWV values, a small dry bias of less than 1 mm for the GNSS IWV is detected. Additionally, the study compares GNSS IWV trends with the corresponding values derived from RHARM at selected radiosonde sites with more than ten years of data. The trends are mostly statistically significant and in good agreement.

Funder

ECMWF

Estonian Research Council team

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference90 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3