Forest aboveground biomass stock and resilience in a tropical landscape of Thailand

Author:

Jha NidhiORCID,Tripathi Nitin Kumar,Chanthorn Wirong,Brockelman Warren,Nathalang Anuttara,Pélissier Raphaël,Pimmasarn Siriruk,Ploton Pierre,Sasaki Nophea,Virdis Salvatore G. P.,Réjou-Méchain Maxime

Abstract

Abstract. Half of Asian tropical forests were disturbed in the last century resulting in the dominance of secondary forests in Southeast Asia. However, the rate at which biomass accumulates during the recovery process in these forests is poorly understood. We studied a forest landscape located in Khao Yai National Park (Thailand) that experienced strong disturbances in the last century due to clearance by swidden farmers. Combining recent field and airborne laser scanning (ALS) data, we first built a high-resolution aboveground biomass (AGB) map of over 60 km2 of forest landscape. We then used the random forest algorithm and Landsat time series (LTS) data to classify landscape patches as non-forested versus forested on an almost annual basis from 1972 to 2017. The resulting chronosequence was then used in combination with the AGB map to estimate forest carbon recovery rates in secondary forest patches during the first 42 years of succession. The ALS-AGB model predicted AGB with an error of 14 % at 0.5 ha resolution (RMSE=45 Mg ha−1) using the mean top-of-canopy height as a single predictor. The mean AGB over the landscape was 291 Mg ha−1, showing a high level of carbon storage despite past disturbance history. We found that AGB recovery varies non-linearly in the first 42 years of the succession, with an increasing rate of accumulation through time. We predicted a mean AGB recovery rate of 6.9 Mgha-1yr-1, with a mean AGB gain of 143 and 273 Mg ha−1 after 20 and 40 years, respectively. This rate estimate is about 50 % larger than the rate prescribed for young secondary Asian tropical rainforests in the 2019 refinement of the 2006 IPCC guidelines for national greenhouse gas inventories. Our study hence suggests that the new IPCC rates, which were based on limited data from Asian tropical rainforests, strongly underestimate the carbon potential of forest regrowth in tropical Asia. Our recovery estimates are also within the range of those reported for the well-studied Latin American secondary forests under similar climatic conditions. This study illustrates the potential of ALS data not only for scaling up field AGB measurements but also for predicting AGB recovery dynamics when combined with long-term satellite data. It also illustrates that tropical forest landscapes that were disturbed in the past are of utmost importance for the regional carbon budget and thus for implementing international programs such as REDD+.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3