Vicarious calibration of GEDI biomass with Landsat age data for understanding secondary forest carbon dynamics

Author:

Jha NidhiORCID,Healey Sean PORCID,Yang Zhiqiang,Ståhl GöranORCID,Betts Matthew GORCID

Abstract

Abstract The recovery of biomass in secondary forests plays a vital role in global carbon sequestration processes and carbon emission mitigation. However, accurately quantifying the accumulation rate of aboveground biomass density in these forests is challenging owing to limited longitudinal field data. An alternative monitoring strategy is characterizing the mean biomass at a single point in time across stands with a range of known ages. This chronosequence approach can also be used with remotely sensed data by combining biomass measured with platforms such as NASA’s Global Ecosystem Dynamics Investigation (GEDI) mission with forest age strata provided by historic Landsat imagery. However, focusing on the low-biomass conditions common in newly regenerating forests will accentuate commonly observed over-prediction of low biomass values. We propose a vicarious calibration approach that develops a correction for GEDI’s biomass models in young forests, which may be mapped using Landsat time series, using an assumption that the aboveground biomass of newly cleared forests is zero. We tested this approach, which requires no additional local field data, in the U.S. Pacific Northwest, where extensive inventory data from the USDA Forest Service are available. Our results show that the calibration did not significantly improve the fit of predicted biomass as a function of age across 12 ecoregions (one-side t-test; p = 0.20), but it did significantly reduce bias for the youngest age groups with respect to reference data. Calibrated GEDI-based biomass estimates for < 20 year old forests were more accurate than 2006 IPCC defaults in most ecoregions (with respect to authoritative inventory estimates) and may represent a basis for refining carbon storage expectations for secondary forests globally.

Funder

Gedi Mission

NASA grant

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3