The effect of coal-fired power-plant SO<sub>2</sub> and NO<sub>x</sub> control technologies on aerosol nucleation in the source plumes

Author:

Lonsdale C. R.,Stevens R. G.,Brock C. A.ORCID,Makar P. A.,Knipping E. M.,Pierce J. R.ORCID

Abstract

Abstract. Nucleation in coal-fired power-plant plumes can greatly contribute to particle number concentrations near source regions. The changing emissions rates of SO2 and NOx due to pollution-control technologies over recent decades may have had a significant effect on aerosol formation and growth in the plumes with ultimate implications for climate and human health. We use the System for Atmospheric Modeling (SAM) large-eddy simulation model with the TwO-Moment Aerosol Sectional (TOMAS) microphysics algorithm to model the nucleation in plumes of coal-fired plants. We test a range of cases with varying emissions to simulate the implementation of emissions-control technologies between 1997 and 2010. We start by simulating the W. A. Parish power plant (near Houston, TX) during this time period, when NOx emissions were reduced by ~90% and SO2 emissions decreased by ~30%. Increases in plume OH (due to the reduced NOx) produced enhanced SO2 oxidation and an order-of-magnitude increase in particle nucleation in the plume despite the reduction in SO2 emissions. These results suggest that NOx emissions could strongly regulate particle nucleation and growth in power-plant plumes. Next, we test a range of cases with varying emissions to simulate the implementation of SO2 and NOx emissions-control technologies. Particle formation generally increases with SO2 emission, while NOx shows two different regimes: increasing particle formation with increasing NOx under low-NOx emissions and decreasing particle formation with increasing NOx under high-NOx emissions. Next, we compare model results with airborne measurements made in the W. A. Parish power-plant plume in 2000 and 2006, confirming the importance of NOx emissions on new particle formation and highlighting the substantial effect of background aerosol loadings on this process (the more polluted background of the 2006 case caused more than an order-of-magnitude reduction in particle formation in the plume compared to the cleaner test day in 2000). Finally, we calculate particle-formation statistics of 330 coal-fired power plants in the US in 1997 and 2010, and the model results show a median decrease of 19% in particle formation rates from 1997 to 2010 (whereas the W. A. Parish case study showed an increase). Thus, the US power plants, on average, show a different result than was found for the W. A. Parish plant specifically, and it shows that the strong NOx controls (90% reduction) implemented at the W. A. Parish plant (with relatively weak SO2 emissions reductions, 30%) are not representative of most power plants in the US during the past 15 yr. These results suggest that there may be important climate implications of power-plant controls due to changes in plume chemistry and microphysics, but the magnitude and sign of the aerosol changes depend greatly on the relative reductions in NOx and SO2 emissions in each plant. More extensive plume measurements for a range of emissions of SO2 and NOx and in varying background aerosol conditions are needed, however, to better quantify these effects.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3