Does Ambient Secondary Conversion or the Prolonged Fast Conversion in Combustion Plumes Cause Severe PM2.5 Air Pollution in China?

Author:

Shen Yanjie,Meng He,Yao Xiaohong,Peng ZhongrenORCID,Sun Yele,Zhang Jie,Gao Yang,Feng LiminORCID,Liu Xiaohuan,Gao Huiwang

Abstract

The ambient formation of secondary particulate matter (ambient FSPM) is commonly recognized as the major cause of severe PM2.5 air pollution in China. We present observational evidence showing that the ambient FSPM was too weak to yield a detectable contribution to extreme PM2.5 pollution events that swept northern China between 11 and 14 January 2019. Although the Community Multiscale Air Quality (CMAQ) model (v5.2) reasonably reproduced the observations in January 2019, it largely underestimated the concentrations of the PM2.5 during the episode. We propose a novel mechanism, called the “in-fresh-stack-plume non-precipitation-cloud processing of aerosols” followed by the evaporation of semi-volatile components from the aerosols, to generate PM2.5 at extremely high concentrations because of highly concentrated gaseous precursors and large amounts of water droplets in fresh cooling combustion plumes under poor dispersion conditions, low ambient temperature, and high relative humidity. The recorded non-precipitation-cloud processing of the aerosols in fresh stack combustion plumes normally lasts 20–30 s, but it prolongs as long as 2–5 min under cold, humid, and stagnant meteorological conditions and expectedly causes severe PM2.5 pollution events. Regardless of the presence of the natural cloud in the planetary boundary layer during the extreme events, the fast conversion of air pollutants in water droplets and the generation of the PM2.5 through the non-precipitation-cloud processing of aerosols always occur in fresh combustion plumes. The processing of aerosols is detectable using a nano-scan particle sizer assembled on an unmanned aerial vehicle to monitor the particle formation in stack plumes. In-fresh-stack-plume processed aerosols under varying meteorological conditions need to be studied urgently.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3