Detection in the summer polar stratosphere of pollution plume from East Asia and North America by balloon-borne in situ CO measurements

Author:

Krysztofiak G.,Thiéblemont R.,Huret N.,Catoire V.,Té Y.,Jégou F.,Coheur P. F.,Clerbaux C.,Payan S.,Drouin M. A.,Robert C.,Jeseck P.,Attié J.-L.,Camy-Peyret C.

Abstract

Abstract. The SPIRALE and SWIR balloon-borne instruments were launched in the Arctic polar region (near Kiruna, Sweden, 67.9° N–21.1° E) during summer on 7 and 24 August 2009 and on 14 August 2009, respectively. The SPIRALE instrument performed in situ measurements of several trace gases including CO and O3 at altitudes between 9 and 34 km, with very high vertical resolution (∼ 5 m). The SWIR-balloon instrument measured total and partial column of several species including CO. The CO stratospheric profile from SPIRALE for 7 August 2009 shows some specific structures with large concentrations in the low levels (potential temperatures between 320 and 380 K, i.e. 10–14 km height). These structures are not present in the CO vertical profile of SPIRALE for 24 August 2009, for which the volume mixing ratios are typical from polar latitudes (∼ 30 ppb). CO total columns retrieved from the IASI-MetOp satellite sounder for the three dates of flights are used to understand this CO variability. SPIRALE and SWIR CO partial columns between 9 and 34 km are compared, allowing us to confirm that the enhancement of CO is localised in the stratosphere. The measurements are also investigated in terms of CO:O3 correlations and using several modelling approaches (trajectory calculations, potential vorticity fields, results of chemistry transport model) in order to characterize the origin of the air masses sampled. The emission sources are qualified in terms of source type (fires, urban pollution) using NH3 and CO measurements from IASI-MetOp and fires detection from MODIS on board the TERRA/AQUA satellite. The results give strong evidence that the unusual abundance of CO on 7 August is due to surface pollution plumes from East Asia and North America transporting to the upper troposphere and then entering the lower stratosphere by isentropic advection. This study strengthens evidence that the composition of low polar stratosphere in summer may be affected by anthropogenic surface emissions through long-range transport.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3