A fast SEVIRI simulator for quantifying retrieval uncertainties in the CM SAF cloud physical property algorithm
-
Published:2012-11-20
Issue:22
Volume:12
Page:10957-10969
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Jonkheid B. J.,Roebeling R. A.,van Meijgaard E.
Abstract
Abstract. The uncertainties in the cloud physical properties derived from satellite observations make it difficult to interpret model evaluation studies. In this paper, the uncertainties in the cloud water path (CWP) retrievals derived with the cloud physical properties retrieval algorithm (CPP) of the climate monitoring satellite application facility (CM SAF) are investigated. To this end, a numerical simulator of MSG-SEVIRI observations has been developed that calculates the reflectances at 0.64 and 1.63 μm for a wide range of cloud parameter values, satellite viewing geometries and surface albedos using a plane-parallel radiative transfer model. The reflectances thus obtained are used as input to CPP, and the retrieved values of CWP are compared to the original input of the simulator. Cloud parameters considered in this paper refer to e.g. sub-pixel broken clouds and the simultaneous occurrence of ice and liquid water clouds within one pixel. These configurations are not represented in the CPP algorithm and as such the associated retrieval uncertainties are potentially substantial. It is shown that the CWP retrievals are very sensitive to the assumptions made in the CPP code. The CWP retrieval errors are generally small for unbroken single-layer clouds with COT > 10, with retrieval errors of ~3% for liquid water clouds to ~10% for ice clouds. In a multi-layer cloud, when both liquid water and ice clouds are present in a pixel, the CWP retrieval errors increase dramatically; depending on the cloud, this can lead to uncertainties of 40–80%. CWP retrievals also become more uncertain when the cloud does not cover the entire pixel, leading to errors of ~50% for cloud fractions of 0.75 and even larger errors for smaller cloud fractions. Thus, the satellite retrieval of cloud physical properties of broken clouds as well as multi-layer clouds is complicated by inherent difficulties, and the proper interpretation of such retrievals requires extra care.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference37 articles.
1. Ackerman, S., Strabala, K., Menzel, W., Frey, R., Moeller, C., and Gumley, L.: Discriminating clear sky from clouds with MODIS, J. Geophys. Res., 103, 32141–32157, 1998. 2. Anderson, G., Clough, S., Kneizys, F., Chetwynd, J., and Shettle, E.: AFGL atmospheric constituent profiles (0–120 km), Tech. Rep. AFGL-TR-86-0110, Air Force Geophysics Laboratory, 1986. 3. Berk, A., Anderson, G., Acharya, P., Chetwynd, J., Bernstein, L., Shettle, E., Matthew, M., and Adler-Golden, S.: MODTRAN4 Version 2 Users Manual, Tech. Rep., Air Force Research Laboratory, 2000. 4. Bodas-Salcedo, A., Webb, M. J., Bony, S., Chepfer, H., Dufresne, J.-L., Klein, S., Zhang, Y., Marchand, R., Haynes, J. M., Pincus, R., and John, V. O.: COSP: Satellite simulation software for model assessment, B. Am. Meteorol. Soc., 92, 1023–1043, 2011. 5. Bugliaro, L., Zinner, T., Keil, C., Mayer, B., Hollmann, R., Reuter, M., and Thomas, W.: Validation of cloud property retrievals with simulated satellite radiances: a case study for SEVIRI, Atmos. Chem. Phys., 11, 5603–5624, https://doi.org/10.5194/acp-11-5603-2011, 2011.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|