Validation of cloud property retrievals with simulated satellite radiances: a case study for SEVIRI

Author:

Bugliaro L.,Zinner T.,Keil C.,Mayer B.,Hollmann R.,Reuter M.,Thomas W.

Abstract

Abstract. Validation of cloud properties retrieved from passive spaceborne imagers is essential for cloud and climate applications but complicated due to the large differences in scale and observation geometry between the satellite footprint and the independent ground based or airborne observations. Here we illustrate and demonstrate an alternative approach: starting from the output of the COSMO-EU weather model of the German Weather Service realistic three-dimensional cloud structures at a spatial scale of 2.33 km are produced by statistical downscaling and microphysical properties are associated to them. The resulting data sets are used as input to the one-dimensional radiative transfer model libRadtran to simulate radiance observations for all eleven low resolution channels of MET-8/SEVIRI. At this point, both cloud properties and satellite radiances are known such that cloud property retrieval results can be tested and tuned against the objective input "truth". As an example, we validate a cloud property retrieval of the Institute of Atmospheric Physics of DLR and that of EUMETSAT's Climate Monitoring Science Application Facility CMSAF. Cloud detection and cloud phase assignment perform well. By both retrievals 88% of the pixels are correctly classified as clear or cloudy. The DLR algorithm assigns the correct thermodynamic phase to 95% of the cloudy pixels and the CMSAF retrieval to 84%. Cloud top temperature is slightly overestimated by the DLR code (+3.1 K mean difference with a standard deviation of 10.6 K) and to a very low extent by the CMSAF code (−0.12 K with a standard deviation of 7.6 K). Both retrievals account reasonably well for the distribution of optical thickness for both water and ice clouds, with a tendency to underestimation. Cloud effective radii are most difficult to evaluate but the APICS algorithm shows that realistic histograms of occurrences can be derived (CMSAF was not evaluated in this context). Cloud water path, which is a combination of the last two quantities, is slightly underestimated by APICS, while CMSAF shows a larger scattering.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3