Chemical analysis of the Asian Tropopause Aerosol Layer (ATAL) with emphasis on secondary aerosol particles using aircraft based in situ aerosol mass spectrometry

Author:

Appel OliverORCID,Köllner FranziskaORCID,Dragoneas AntonisORCID,Hünig AndreasORCID,Molleker SergejORCID,Schlager Hans,Mahnke ChristophORCID,Weigel RalfORCID,Port Max,Schulz ChristianeORCID,Drewnick Frank,Vogel BärbelORCID,Stroh FredORCID,Borrmann StephanORCID

Abstract

Abstract. Aircraft borne in-situ measurements of the chemical aerosol composition were conducted in the Asian Tropopause Aerosol layer (ATAL) over the Indian subcontinent in summer 2017 covering particle sizes below 3 µm. We have implemented a recently developed aerosol mass spectrometer, which adopts the laser desorption technique as well as the thermal desorption method for quantitative bulk information (i.e. a modified Aerodyne AMS), aboard the high altitude research aircraft M-55 Geophysica. The instrument was deployed in July and August 2017 during the StratoClim EU campaign (Stratospheric and upper tropospheric processes for better climate predictions) over Nepal, India, Bangladesh, and the Bay of Bengal, covering altitudes up to 20 km a.s.l. For particles with diameters between 10 nm and ~3 µm the vertical profiles of aerosol number densities from the eight research flights show significant enhancements in the altitude range of the ATAL. We observed enhancements in the mass concentrations of particulate nitrate, ammonium, and organics in a similar altitude range between approximately 13 km and 18 km (corresponding to 360 K and 410 K potential temperature). By means of the two aerosol mass spectrometry techniques, we show that the particles in the ATAL mainly consist of ammonium nitrate and organics. The single particle analysis from laser desorption and ionizaton mass spectrometry revealed that a significant particle fraction (up to 70 % of all analyzed particles by number) within the ATAL results from the conversion of inorganic and organic gas-phase precursors, rather than from the uplift of primary particles from below. This can be inferred from the fact that the majority of the particles encountered in the ATAL consisted solely of secondary substances, namely an internal mixture of nitrate, ammonium, sulfate, and organic matter. These particles are externally mixed with particles containing primary components as well. The single particle analyses suggest that the organic matter within the ATAL and in the lower stratosphere (even above 420 K) can partly be identified as organosulfates, in particular glycolic acid sulfate, which are known as components indicative for secondary organic aerosol formation. Also, the secondary particles are smaller in size compared to those containing primary components (mainly potassium, metals, and elemental carbon). The analysis of particulate organics with the thermal desorption method shows that the degree of oxidation for particles observed in the ATAL is consistent with expectations about secondary organics that were subject to photochemical processing and ageing. We found that organic aerosol was less oxidized in lower regions of the ATAL (< 380 K) compared to higher altitudes (here 390–420 K). These results suggest that particles formed in the lower ATAL are uplifted by diabatic heating processes and thereby subject to extensive oxidative ageing. Thus, our observations are consistent with the concept of precursor gases being emitted from regional ground sources, subjected to rapid convective uplift, and followed by secondary particle formation and growth in the upper troposphere within the confinement of the Asian monsoon anticyclone. As a consequence the chemical composition of these particles largely differs from the aerosol in the lower stratospheric background and the Junge layer.

Funder

FP7 Ideas: European Research Council

Bundesministerium für Bildung und Forschung

Deutsche Forschungsgemeinschaft

Publisher

Copernicus GmbH

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3