The realization of autonomous, aircraft-based, real-time aerosol mass spectrometry in the upper troposphere and lower stratosphere
-
Published:2022-10-12
Issue:19
Volume:15
Page:5719-5742
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Dragoneas AntonisORCID, Molleker SergejORCID, Appel OliverORCID, Hünig AndreasORCID, Böttger Thomas, Hermann Markus, Drewnick Frank, Schneider JohannesORCID, Weigel RalfORCID, Borrmann StephanORCID
Abstract
Abstract. We report on the developments that enabled the field deployment of a fully automated aerosol mass spectrometer, especially designed for high-altitude measurements on unpressurized aircraft. The merits of the two main categories of real-time aerosol mass spectrometry, i.e. (a) single-particle laser desorption and ionization and (b) continuous thermal
desorption and electron impact ionization of aerosols, have been integrated
into one compact apparatus with the aim to perform in situ real-time
analysis of aerosol chemical composition. The demonstrated instrument, named the ERICA (European Research Council Instrument for Chemical composition of Aerosols), operated successfully aboard the high-altitude research aircraft M-55 Geophysica at altitudes up to 20 km while being exposed to ambient conditions of
very low atmospheric pressure and temperature. A primary goal of those field deployments was the in situ study of the Asian tropopause aerosol layer (ATAL). During 11 research flights, the instrument operated for more than 49 h and collected chemical composition information of more than 150 000 single particles combined with quantitative chemical composition analysis of aerosol particle ensembles. This paper presents in detail the technical characteristics of the main constituent parts of the instrument, as well as the design considerations for its integration into the aircraft and its autonomous operation in the upper troposphere and lower stratosphere (UTLS). Additionally, system performance data from the first field deployments of the instrument are presented and discussed, together with exemplary mass spectrometry data collected during those flights.
Funder
European Research Council Bundesministerium für Bildung und Forschung
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference53 articles.
1. Allan, J. D., Jimenez, J. L., Williams, P. I., Alfarra, M. R., Bower, K.
N., Jayne, J. T., Coe, H., and Worsnop, D. R.: Quantitative sampling using
an Aerodyne aerosol mass spectrometer 1. Techniques of data interpretation
and error analysis, J. Geophys. Res., 108, 4090, https://doi.org/10.1029/2002JD002358, 2003. 2. Allen, J. O., Fergenson, D. P., Gard, E. E., Hughes, L. S., Morrical, B. D.,
Kleeman, M. J., Gross, D. S., Gälli, M. E., Prather, K. A., and Cass, G.
R.: Particle Detection Efficiencies of Aerosol Time of Flight Mass
Spectrometers under Ambient Sampling Conditions, Environ. Sci. Technol., 34, 211–217, https://doi.org/10.1021/es9904179, 2000. 3. Appel, O., Köllner, F., Dragoneas, A., Hünig, A., Molleker, S., Schlager, H., Mahnke, C., Weigel, R., Port, M., Schulz, C., Drewnick, F., Vogel, B., Stroh, F., and Borrmann, S.: Chemical analysis of the Asian Tropopause Aerosol Layer (ATAL) with emphasis on secondary aerosol particles using aircraft based in situ aerosol mass spectrometry, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2022-92, in review, 2022. 4. Borrmann, S.: High altitude atmospheric observation, in: McGraw-Hill
Yearbook of Science & Technology 2005, McGraw-Hill, New York, 137–139, ISBN: 0071445048, ISSN: 0076-2016, 2005. 5. Borrmann, S., Kunkel, D., Weigel, R., Minikin, A., Deshler, T., Wilson, J. C., Curtius, J., Volk, C. M., Homan, C. D., Ulanovsky, A., Ravegnani, F., Viciani, S., Shur, G. N., Belyaev, G. V., Law, K. S., and Cairo, F.: Aerosols in the tropical and subtropical UT/LS: in-situ measurements of submicron particle abundance and volatility, Atmos. Chem. Phys., 10, 5573–5592, https://doi.org/10.5194/acp-10-5573-2010, 2010.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|