Strato-mesospheric ClO observations by SMILES: error analysis and diurnal variation
Author:
Sato T. O.,Sagawa H.,Kreyling D.,Manabe T.,Ochiai S.,Kikuchi K.,Baron P.,Mendrok J.,Urban J.,Murtagh D.,Yasui M.,Kasai Y.
Abstract
Abstract. Chlorine monoxide (ClO) is the key species for anthropogenic ozone loss in the middle atmosphere. We observed the ClO diurnal variation using the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) on the International Space Station which has a non sun-synchronous orbit. This is the first global observation of the ClO diurnal variation from the stratosphere up to the mesosphere. The SMILES observation reproduced the diurnal variation of stratospheric ClO, an enhancement during a daytime, as observed by the Microwave Limb Sounder on the Upper Atmosphere Research Satellite (UARS/MLS). Mesospheric ClO has shown a different diurnal behavior with an enhancement during nighttime. The ClO enhancement was found at a pressure of 0.02 hPa (about 70 km) with an amplitude of about 100 pptv and reached up to 0.01 hPa (80 km) in the zonal mean of 50° N–65° N in January–February 2010. The observation of mesospheric ClO was possible due to the 10–20 times better signal-to-noise ratio of the spectra than those of past microwave/submillimeter-wave limb-emission sounders. We performed a quantitative error analysis for the strato- and mesospheric ClO of the Level-2 research (L2r) product version 2.1.5 taking into account all possible error contributions; i.e. errors due to spectrum noise, smoothing and uncertainties in the radiative transfer model and instrument function. The SMILES L2r v2.1.5 ClO data are useful over the range 0.01 and 100 hPa with a total error of 10–30 pptv (about 10%) with averaging of 100 profiles. The vertical resolution is 3–5 km and 5–8 km for the stratosphere and mesosphere, respectively. The performance of the SMILES observation opens the new opportunity to investigate ClO up to the mesopause.
Publisher
Copernicus GmbH
Reference40 articles.
1. Baron, P., Ricaud, P., de La No{ë}, J., Eriksson, J. E. P., Merino, F., Ridal, M., and Murtagh, D. P.: Studies for the Odin sub-millimetre radiometer, II. Retrieval methodology, Can. J. Phys., 80, 341, https://doi.org/10.1139/p01-150, 2002. 2. Baron, P., Mendrok, J., Kasai, Y., Ochiai, S., Seta, T., Sagi, K., Suzuki, K., Sagawa, H., and Urban, J.: AMATERAU: Model for atmospheric terahertz radiation analysis and simulation, J. Natl. Inform. Commun. Technol., 55, 109–121, 2008. 3. Baron, P., Urban, J., Sagawa, H., Möller, J., Murtagh, D. P., Mendrok, J., Dupuy, E., Sato, T. O., Ochiai, S., Suzuki, K., Manabe, T., Nishibori, T., Kikuchi, K., Sato, R., Takayanagi, M., Murayama, Y., Shiotani, M., and Kasai, Y.: The Level 2 research product algorithms for the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES), Atmos. Meas. Tech., 4, 2105–2124, https://doi.org/10.5194/amt-4-2105-2011, 2011. 4. Boissoles, J., Boulet, C., Tipping, R. H., Brown, A., and Ma, Q.: Theoretical calculation of the translation-rotation collision-induced absorption in N2-N2, O2-O2, and N2-O2 pairs, J. Quant. Spectrosc. Ra., 82, 505–516, https://doi.org/10.1016/S0022-4073(03)00174-2, 2003. 5. Cazzoli, G. and Puzzarini, C.: Hyperfine structure of the $J=1 \\leftarrow 0$ transition of \\chem{H^{35}Cl and \\chem{H^{37}Cl}: improved ground state parameters}, J. Mol. Spectrosc., 226, 161–168, 2004.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|