Author:
Baron Ph.,Ricaud Ph.,Noë J de la,Eriksson J EP,Merino F,Ridal M,Murtagh D P
Abstract
This paper presents the first algorithm developed to retrieve atmospheric vertical profiles of trace gases from calibrated spectra measured by the sub-millimetre radiometer (SMR) onboard the Odin satellite. An estimation of atmospheric profiles is obtained by means of an inversion of the spectra using the Optimal Estimation Method. Great attention is paid to the study of the simultaneous retrieval of several species and nonlinearity effects. The measurement response is defined to give the altitude domain of a good retrieval. Main sources of measurement and forward model errors are characterized and separated into two categories: the fixed errors and the variable errors. We define a standard retrieval strategy that can be applied to theoretically investigate any frequency band of any observing Odin mode. For each frequency band, two categories of species are defined: the target species, i.e., the main species to be retrieved, and the interfering species, i.e., molecules emitting an interfering radiance in the observed band. The standard code is based upon an inversion of spectra using a linearized forward model and simultaneously estimates target species and interfering species. As an example, inversions of synthetic noise-free spectra of ozone and chlorine monoxide within an autocorrelator band ranging from 501.18 to 501.58 GHz are shown to behave as expected in the middle stratosphere and in the lower mesosphere. The error analysis shows retrieval limitations in the lower stratosphere that are mainly induced by the high sensitivity of the retrieval to parameters such as tangent height, accuracy in the vertical profile of the interfering species, and spectral parameters of both target lines and interfering lines. PACS Nos.: 42.68Ay, 07.07Df, 07.57Kp
Publisher
Canadian Science Publishing
Subject
General Physics and Astronomy
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献