Solar 27-day signatures in standard phase height measurements above central Europe
-
Published:2019-02-15
Issue:3
Volume:19
Page:2079-2093
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
von Savigny Christian,Peters Dieter H. W.,Entzian Günter
Abstract
Abstract. We report on the effect of solar variability at the 27-day and the 11-year
timescales on standard phase height measurements in the ionospheric D region
carried out in central Europe. Standard phase height corresponds to the
reflection height of radio waves (for constant solar zenith distance) in the
ionosphere near 80 km altitude, where NO is ionized by solar Lyman-α
radiation. Using the superposed epoch analysis (SEA) method, we extract
statistically highly significant solar 27-day signatures in standard phase
heights. The 27-day signatures are roughly inversely correlated to solar
proxies, such as the F10.7 cm radio flux or the Lyman-α flux. The
sensitivity of standard phase height change to solar forcing at the 27-day
timescale is found to be in good agreement with the sensitivity for the
11-year solar cycle, suggesting similar underlying mechanisms. The amplitude
of the 27-day signature in standard phase height is larger during solar
minimum than during solar maximum, indicating that the signature is not only
driven by photoionization of NO. We identified statistical evidence for an
influence of ultra-long planetary waves on the quasi 27-day signature of
standard phase height in winters of solar minimum periods.
Funder
Bundesministerium für Bildung und Forschung
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference44 articles.
1. Barth, C. A., Tobiska, W. K., Rottman, G. J., and White, O. R.: Comparison of
10.7 cm radio flux with SME solar Lyman alpha flux, Geophys. Res. Lett., 17,
571–574, 1990. a 2. Brasseur, G., DeRudder, A., Keating, G. M., and Pitts, M. C.: Response of
middle atmosphere to short-term solar ultraviolet variations, 2, Theory, J.
Geophys. Res., 92, 903–914, https://doi.org/10.1029/JD092iD01p00903, 1987. a 3. Charney, J. G. and Drazin, P. G.: Propagation of planetary-scale disturbances
from the lower into the upper atmosphere, J. Geophys. Res., 66, 83–109,
https://doi.org/10.1029/JZ066i001p00083, 1961. a 4. Chree, C.: Some phenomena of sunspots and of terrestrial magnetism at Kew
Observatory, Philos. Trans. R. Soc. London A, 212, 75–116,
https://doi.org/10.1098/rsta.1913.0003, 1912. a 5. Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P.,
Bechtold, P., Beljaars, A. C. M., van de Berg, I., Biblot, J., Bormann, N.,
Delsol, C., Dragani, R., Fuentes, M., Greer, A.<span id="page2092"/> J., Haimberger, L., Healy, S.
B., Hersbach, H., Holm, E. V., Isaksen, L., Kallberg, P., Kohler, M.,
Matricardi, M., McNally, A. P., Mong-Sanz, B. M., Morcette, J.-J., Park,
B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thepaut, J. N., and Vitart,
F.: The ERA-Interim reanalysis: Configuration and performance of the data
assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597,
https://doi.org/10.1002/qj.828, 2011. a, b
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|