Water adsorption and hygroscopic growth of six anemophilous pollen species: the effect of temperature

Author:

Tang MingjinORCID,Gu Wenjun,Ma QingxinORCID,Li Yong JieORCID,Zhong Cheng,Li Sheng,Yin Xin,Huang Ru-Jin,He Hong,Wang XinmingORCID

Abstract

Abstract. Hygroscopicity largely affects environmental and climatic impacts of pollen grains, one important type of primary biological aerosol particles in the troposphere. However, our knowledge of pollen hygroscopicity is rather limited, and the effect of temperature in particular has rarely been explored before. In this work three different techniques, including a vapor sorption analyzer, diffusion reflectance infrared Fourier transform spectroscopy (DRIFTS) and transmission Fourier transform infrared spectroscopy (transmission FTIR) were employed to characterize six anemophilous pollen species and to investigate their hygroscopic properties as a function of relative humidity (RH, up to 95 %) and temperature (5 or 15, 25 and 37 ∘C). Substantial mass increase due to water uptake was observed for all the six pollen species, and at 25 ∘C the relative mass increase at 90 % RH, when compared to that at <1 % RH, ranged from ∼30 % to ∼50 %, varying with pollen species. It was found that the modified κ-Köhler equation can well approximate mass hygroscopic growth of all the six pollen species, and the single hygroscopicity parameter (κ) was determined to be in the range of 0.034±0.001 to 0.061±0.007 at 25 ∘C. In situ DRIFTS measurements suggested that water adsorption by pollen species was mainly contributed to by OH groups of organic compounds they contained, and good correlations were indeed found between hygroscopicity of pollen species and the number of OH groups, as determined using transmission FTIR. An increase in temperature would in general lead to a decrease in hygroscopicity, except for pecan pollen. For example, κ values decreased from 0.073±0.006 at 5 ∘C to 0.061±0.007 at 25 ∘C and to 0.057±0.004 at 37 ∘C for Populus tremuloides pollen, and decreased from 0.060±0.001 at 15 ∘C to 0.054±0.001 at 25 ∘C and 0.050±0.002 at 37 ∘C for paper mulberry pollen.

Funder

National Natural Science Foundation of China

Chinese Academy of Sciences

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3