Pollen foraging mediates exposure to dichotomous stressor syndromes in honey bees

Author:

Wizenberg Sydney B.,French Sarah K.,Newburn Laura R.,Pepinelli Mateus,Conflitti Ida M.,Moubony Mashaba,Ritchie Caroline,Jamieson Aidan,Richardson Rodney T.,Travas Anthea,Imrit Mohammed Arshad,Chihata Matthew,Higo Heather,Common Julia,Walsh Elizabeth M.,Bixby Miriam,Guarna M. Marta,Pernal Stephen F.,Hoover Shelley E.,Currie Robert W.,Giovenazzo Pierre,Guzman-Novoa Ernesto,Borges Daniel,Foster Leonard J.,Zayed Amro

Abstract

AbstractRecent declines in the health of honey bee colonies used for crop pollination pose a considerable threat to global food security. Foraging by honey bee workers represents the primary route of exposure to a plethora of toxins and pathogens known to affect bee health, but it remains unclear how foraging preferences impact colony-level patterns of stressor exposure. Resolving this knowledge gap is crucial for enhancing the health of honey bees and the agricultural systems that rely on them for pollination. To address this, we carried out a national-scale experiment encompassing 456 Canadian honey bee colonies to first characterize pollen foraging preferences in relation to major crops, then explore how foraging behaviour influences patterns of stressor exposure. We used a metagenetic approach to quantify honey bee dietary breadth and found that bees display distinct foraging preferences that vary substantially relative to crop type and proximity, and the breadth of foraging interactions can be used to predict the abundance and diversity of stressors a colony is exposed to. Foraging on diverse plant communities was associated with increased exposure to pathogens, while the opposite was associated with increased exposure to xenobiotics. Our work provides the first large-scale empirical evidence that pollen foraging behaviour plays an influential role in determining exposure to dichotomous stressor syndromes in honey bees.Significance StatementInsect-mediated pollination is an important ecological process that is crucial for food production. Managed honey bee colonies are one of the most important insect pollinators, but their health has been under threat from a variety of stressors. Bee workers are primarily exposed to stressors while foraging and understanding how bee foraging preferences are related to exposure risk could provide pivotal information to improve management efforts. Here, we studied honey bee foraging preferences in relation to prominent Canadian crops and across a gradient of modified environments. We found that honey bees show distinct, measurable foraging preferences and that dietary diversity is a strong predictor of the stressors that colonies are exposed to.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3