Computationally efficient air quality forecasting tool: implementation of STOPS v1.5 model into CMAQ v5.0.2 for a prediction of Asian dust

Author:

Jeon Wonbae,Choi Yunsoo,Percell Peter,Souri Amir HosseinORCID,Song Chang-Keun,Kim Soon-Tae,Kim JhoonORCID

Abstract

Abstract. This study suggests a new modeling framework using a hybrid Eulerian–Lagrangian-based modeling tool (the Screening Trajectory Ozone Prediction System, STOPS) for a prediction of an Asian dust event in Korea. The new version of STOPS (v1.5) has been implemented into the Community Multi-scale Air Quality (CMAQ) model version 5.0.2. The STOPS modeling system is a moving nest (Lagrangian approach) between the source and the receptor inside the host Eulerian CMAQ model. The proposed model generates simulation results that are relatively consistent with those of CMAQ but within a comparatively shorter computational time period. We find that standard CMAQ generally underestimates PM10 concentrations during the simulation period (February 2015) and fails to capture PM10 peaks during Asian dust events (22–24 February 2015). The underestimation in PM10 concentration is very likely due to missing dust emissions in CMAQ rather than incorrectly simulated meteorology, as the model meteorology agrees well with the observations. To improve the underestimated PM10 results from CMAQ, we used the STOPS model with constrained PM concentrations based on aerosol optical depth (AOD) data from the Geostationary Ocean Color Imager (GOCI), reflecting real-time initial and boundary conditions of dust particles near the Korean Peninsula. The simulated PM10 from the STOPS simulations were improved significantly and closely matched the surface observations. With additional verification of the capabilities of the methodology on emission estimations and more STOPS simulations for various time periods, the STOPS model could prove to be a useful tool not just for the predictions of Asian dust but also for other unexpected events such as wildfires and oil spills.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3