The curled wake model: a three-dimensional and extremely fast steady-state wake solver for wind plant flows
-
Published:2021-04-22
Issue:2
Volume:6
Page:555-570
-
ISSN:2366-7451
-
Container-title:Wind Energy Science
-
language:en
-
Short-container-title:Wind Energ. Sci.
Author:
Martínez-Tossas Luis A.ORCID, King Jennifer, Quon EliotORCID, Bay Christopher J.ORCID, Mudafort RafaelORCID, Hamilton Nicholas, Howland Michael F.ORCID, Fleming Paul A.ORCID
Abstract
Abstract. Wind turbine wake models typically require approximations, such as wake superposition and deflection models, to accurately describe wake physics. However, capturing the phenomena of interest, such as the curled wake and interaction of multiple wakes, in wind power plant flows comes with an increased computational cost. To address this, we propose a new hybrid method that uses analytical solutions with an approximate form of the Reynolds-averaged Navier–Stokes equations to solve the time-averaged flow over a wind plant. We compare results from the solver to supervisory control and data acquisition data from the Lillgrund wind plant obtaining wake model predictions which are generally within 1 standard deviation of the mean power data. We perform simulations of flow over the Columbia River Gorge to demonstrate the capabilities of the model in complex terrain. We also apply the solver to a case with wake steering, which agreed well with large-eddy simulations. This new solver reduces the time – and therefore the related cost – it takes to simulate a steady-state wind plant flow (on the order of seconds using one core). Because the model is computationally efficient, it can also be used for different applications including wake steering for wind power plants and layout optimization.
Funder
U.S. Department of Energy
Publisher
Copernicus GmbH
Subject
Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment
Reference47 articles.
1. Adaramola, M. and Krogstad, P.-A.: Experimental investigation of wake effects
on wind turbine performance, Renew. Energy, 36, 2078–2086, 2011. a 2. Ainslie, J.: Calculating the flowfield in the wake of wind turbines, J. Wind Eng. Indust. Aerodynam., 27, 213–224, https://doi.org/10.1016/0167-6105(88)90037-2, 1988.
a 3. Allaerts, D. and Meyers, J.: Large eddy simulation of a large wind-turbine
array in a conventionally neutral atmospheric boundary layer, Phys. Fluids, 27, 065108, https://doi.org/10.1063/1.4922339, 2015. a 4. Annoni, J., Fleming, P., Scholbrock, A., Roadman, J., Dana, S., Adcock, C.,
Porte-Agel, F., Raach, S., Haizmann, F., and Schlipf, D.: Analysis of
control-oriented wake modeling tools using lidar field results, Wind Energ.
Sci., 3, 819–831, https://doi.org/10.5194/wes-3-819-2018, 2018. a 5. Bartl, J., Mühle, F., Schottler, J., Saetran, L., Peinke, J., Adaramola, M., and Hölling, M.: Wind tunnel experiments on wind turbine wakes in yaw: effects of inflow turbulence and shear, Wind Ener. Sci., 3, 329–343,
https://doi.org/10.5194/wes-3-329-2018, 2018. a
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|