Wind plant wake losses: Disconnect between turbine actuation and control of plant wakes with engineering wake models

Author:

Scott Ryan12ORCID,Hamilton Nicholas2ORCID,Cal Raúl Bayoán1ORCID,Moriarty Patrick2ORCID

Affiliation:

1. Department of Mechanical Engineering, Portland State University 1 , Portland, Oregon 97201, USA

2. National Renewable Energy Laboratory 2 , Golden, Colorado 80401, USA

Abstract

Wake losses from neighboring plants may become a major factor in wind plant design and control as additional plants are constructed in areas with high wind resource availability. Because plant wakes span a large range of physical scales, from turbine rotor diameter to tens of kilometers, it is unclear whether conventional wake models or turbine control strategies are effective at the plant scale. Wake steering and axial induction control are evaluated in the current work as means of reducing the impact of neighboring wind plants on power and levelized cost of electricity. FLOw Redirection and Induction in Steady State (FLORIS) simulations were performed with the Gauss–Curl Hybrid and TurbOPark wake models as well as two operation and maintenance models to investigate control setpoint sensitivity to wake representation and economic factors. Both wake models estimate losses across a range of atmospheric conditions, although the wake loss magnitude is dependent on the wake model. Annual energy production and levelized cost of electricity are driven by wind direction frequency, with frequently aligned plants experiencing the greatest losses. However, both wake steering and axial induction are unable to mitigate the impact of upstream plants. Wake steering is constrained by plant geometry, since wake displacement is much less than the plant wake width, while axial induction requires curtailing the majority of turbines in upstream plants. Individual turbine strategies are limited by their effective scale and model representation. New wake models that include plant-scale physics are needed to facilitate the design of effective plant wake control strategies.

Funder

National Renewable Energy Laboratory

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3