Cryogenic cave carbonates in the Dolomites (northern Italy): insights into Younger Dryas cooling and seasonal precipitation

Author:

Koltai GabriellaORCID,Spötl ChristophORCID,Jarosch Alexander H.,Cheng Hai

Abstract

Abstract. In the European Alps, the Younger Dryas (YD) was characterised by the last major glacier advance, with equilibrium line altitudes being ∼ 220 to 290 m lower than during the Little Ice Age, and also by the development of rock glaciers. Dating of these geomorphic features, however, is associated with substantial uncertainties, leading to considerable ambiguities regarding the internal structure of this stadial, which is the most intensively studied one of the last glacial period. Here, we provide robust physical evidence based on 230Th-dated cryogenic cave carbonates (CCCs) from a cave located at 2274 m a.s.l. in the Dolomites of northern Italy coupled with thermal modelling, indicating that early YD winters were only moderately cold in this part of the Alps. More precisely, we find that the mean annual air temperature dropped ≤ 3 ∘C at the Allerød–YD transition. Our data suggest that autumns and early winters in the early part of the YD were relatively snow-rich, resulting in stable winter snow cover. The latter insulated the shallow subsurface in winter and allowed the cave interior to remain close to the freezing point (0 ∘C) year-round, promoting CCC formation. The main phase of CCC precipitation at ∼ 12.2 ka coincided with the mid-YD transition recorded in other archives across Europe. Based on thermal modelling we propose that CCC formation at ∼ 12.2 ka was most likely associated with a slight warming of approximately +1 ∘C in conjunction with drier autumns and early winters in the second half of the YD. These changes triggered CCC formation in this Alpine cave as well as ice glacier retreat and rock glacier expansion across the Alps.

Funder

Tiroler Wissenschaftsförderung

Publisher

Copernicus GmbH

Subject

Paleontology,Stratigraphy,Global and Planetary Change

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3