Evaluating the link between the sulfur-rich Laacher See volcanic eruption and the Younger Dryas climate anomaly

Author:

Baldini James U. L.,Brown Richard J.,Mawdsley Natasha

Abstract

Abstract. The Younger Dryas is considered the archetypal millennial-scale climate change event, and identifying its cause is fundamental for thoroughly understanding climate systematics during deglaciations. However, the mechanisms responsible for its initiation remain elusive, and both of the most researched triggers (a meltwater pulse or a bolide impact) are controversial. Here, we consider the problem from a different perspective and explore a hypothesis that Younger Dryas climate shifts were catalysed by the unusually sulfur-rich 12.880 ± 0.040 ka BP eruption of the Laacher See volcano (Germany). We use the most recent chronology for the GISP2 ice core ion dataset from the Greenland ice sheet to identify a large volcanic sulfur spike coincident with both the Laacher See eruption and the onset of Younger Dryas-related cooling in Greenland (i.e. the most recent abrupt Greenland millennial-scale cooling event, the Greenland Stadial 1, GS-1). Previously published lake sediment and stalagmite records confirm that the eruption's timing was indistinguishable from the onset of cooling across the North Atlantic but that it preceded westerly wind repositioning over central Europe by ∼ 200 years. We suggest that the initial short-lived volcanic sulfate aerosol cooling was amplified by ocean circulation shifts and/or sea ice expansion, gradually cooling the North Atlantic region and incrementally shifting the midlatitude westerlies to the south. The aerosol-related cooling probably only lasted 1–3 years, and the majority of Younger Dryas-related cooling may have been due to the sea-ice–ocean circulation positive feedback, which was particularly effective during the intermediate ice volume conditions characteristic of ∼ 13 ka BP. We conclude that the large and sulfur-rich Laacher See eruption should be considered a viable trigger for the Younger Dryas. However, future studies should prioritise climate modelling of high-latitude volcanism during deglacial boundary conditions in order to test the hypothesis proposed here.

Publisher

Copernicus GmbH

Subject

Paleontology,Stratigraphy,Global and Planetary Change

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3